Synthesis 2016; 48(18): 3031-3041
DOI: 10.1055/s-0035-1562515
psp
© Georg Thieme Verlag Stuttgart · New York

Practical Synthetic Procedures for the Iron-Catalyzed Intermolecular Olefin Aminohydroxylation Using Functionalized Hydroxylamines

Cheng-Liang Zhu
Department of Chemistry, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA   [email protected]
,
Deng-Fu Lu
Department of Chemistry, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA   [email protected]
,
Jeffrey D. Sears
Department of Chemistry, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA   [email protected]
,
Zhen-Xin Jia
Department of Chemistry, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA   [email protected]
,
Hao Xu*
Department of Chemistry, Georgia State University, 100 Piedmont Avenue SE, Atlanta, GA 30303, USA   [email protected]
› Author Affiliations
Further Information

Publication History

Received: 02 June 2016

Accepted after revision: 06 June 2016

Publication Date:
25 July 2016 (online)


These authors contributed equally to this study.

Abstract

A set of practical synthetic procedures for the iron-catalyzed intermolecular olefin aminohydroxylation reactions in gram scale is reported. In these transformations, a bench-stable functionalized hydroxylamine is applied as the amination reagent. This method is compatible with a broad range of synthetically valuable olefins including those that are incompatible with the existing aminohydroxylation methods. It also provides valuable amino alcohol building blocks with regio- and stereochemical arrays that are complementary to known methods.

Supporting Information

 
  • References

    • 1a Sharpless KB, Chong AO, Oshima K. J. Org. Chem. 1976; 41: 177
    • 1b Li GG, Chang HT, Sharpless KB. Angew. Chem., Int. Ed. Engl. 1996; 35: 451

      For selected references of nonprecious metal-catalyzed olefin amino-oxygenation reactions, see:
    • 2a Fuller PH, Kim J.-W, Chemler SR. J. Am. Chem. Soc. 2008; 130: 17638
    • 2b Paderes MC, Chemler SR. Org. Lett. 2009; 11: 1915
    • 2c Sequeira FC, Chemler SR. Org. Lett. 2012; 14: 4482
    • 2d Michaelis DJ, Shaffer CJ, Yoon TP. J. Am. Chem. Soc. 2007; 129: 1866
    • 2e Williamson KS, Yoon TP. J. Am. Chem. Soc. 2010; 132: 4570
    • 2f Williamson KS, Yoon TP. J. Am. Chem. Soc. 2012; 134: 12370
    • 2g Zhang B, Studer A. Org. Lett. 2013; 15: 4548
    • 3a Liu G.-S, Zhang Y.-Q, Yuan Y.-A, Xu H. J. Am. Chem. Soc. 2013; 135: 3343
    • 3b Zhang Y.-Q, Yuan Y.-A, Liu G.-S, Xu H. Org. Lett. 2013; 15: 3910

    • For intramolecular olefin aminofluorination and aminohalogenation via iron-nitrenoid intermediates, see:
    • 3c Lu D.-F, Liu G.-S, Zhu C.-L, Yuan B, Xu H. Org. Lett. 2014; 16: 2912
    • 3d Zhu C.-L, Tian J.-S, Gu Z.-Y, Xing G.-W, Xu H. Chem. Sci. 2015; 6: 3044
    • 3e Tian J.-S, Zhu C.-L, Chen Y.-R, Xu H. Synthesis 2015; 47: 1709
  • 4 Lu D.-F, Zhu C.-L, Jia Z.-X, Xu H. J. Am. Chem. Soc. 2014; 136: 13186
  • 5 For detailed synthetic procedures of 2, L1, and L2, see experimental section.
    • 6a For a manganese-mediated glycal aziridination for 2-amino sugar synthesis, see: Du Bois J, Tomooka CS, Hong J, Carreira EM. J. Am. Chem. Soc. 1997; 119: 3179
    • 6b For a selected indirect method for 2-amino sugar synthesis, see: Griffith DA, Danishefsky SJ. J. Am. Chem. Soc. 1990; 112: 5811

      For osmium-based aminohydroxylation of indene affords racemic mixtures of 1-, and 2-amino indanols, see:
    • 7a Masruri, Willis AC, McLeod MD. J. Org. Chem. 2012; 77: 8480

    • For an indirect method of 2-aminoindanol synthesis, see:
    • 7b Corey EJ, Roper TD, Ishihara K, Sarakinos G. Tetrahedron Lett. 1993; 34: 8399
  • 8 For experimental details, see Supporting Information.
  • 9 Cis/trans isomeric olefins have been observed to present different reactivity and selectivity in atom transfer reactions that proceed via a stepwise mechanism. For a selected reference, see: Lee NH, Jacobsen EN. Tetrahedron Lett. 1991; 32: 6533
  • 10 Behr J.-B, Chevrier C, Defoin A, Tarnus C, Streith J. Tetrahedron 2003; 59: 543
  • 11 Ng K.-H, Chan AS. C, Yu W.-Y. J. Am. Chem. Soc. 2010; 132: 12862
  • 12 Jiang H.-F, Ye J.-W, Qi C.-R, Huang L.-B. Tetrahedron Lett. 2010; 51: 928
  • 13 He T, Gao W.-C, Wang W.-K, Zhang C. Adv. Synth. Catal. 2014; 356: 1113
  • 14 Endeshaw MM, Bayer A, Hansen LK, Gautun OR. Eur. J. Org. Chem. 2006; 5249
  • 15 Gómez-Sánchez E, Soriano E, Marco-Contelles J. J. Org. Chem. 2007; 72: 8656