Synthesis 2016; 48(18): 2981-2996
DOI: 10.1055/s-0035-1562512
short review
© Georg Thieme Verlag Stuttgart · New York

Stereoselective Metal-Catalyzed C–C Bond Coupling Reactions by Stereoconvergence, Dynamic Kinetic Asymmetric Transformation, or Dynamic Kinetic Resolution

Joanna Wencel-Delord*
Laboratoire de chimie moléculaire (UMR CNRS 7509), University of Strasbourg, ECPM, 25 rue Becquerel, 67087 Strasbourg, France   eMail: francoise.colobert@unistra.fr
,
Françoise Colobert*
Laboratoire de chimie moléculaire (UMR CNRS 7509), University of Strasbourg, ECPM, 25 rue Becquerel, 67087 Strasbourg, France   eMail: francoise.colobert@unistra.fr
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received: 28. April 2016

Accepted after revision: 01. Mai 2016

Publikationsdatum:
28. Juli 2016 (online)


Abstract

The development of stereoselective metal-catalyzed cross-coupling reactions over the past 30 years has revolutionized the way in which C–C, C–N, and C–X bonds are formed in an enantiomerically pure form. In particular asymmetric reactions that transform racemic substrates into enantioenriched products in high, ideally quantitative, yields are particularly appealing. Consequently, many deracemization processes have been developed, implying conceptually diverse strategies such as dynamic kinetic asymmetric transformation (DYKAT), dynamic kinetic resolution (DKR), and stereoconvergence. In this review the most recent achievements in dynamic metal-catalyzed cross couplings of racemic substrates are collected and discussed according to the nature of the deracemization step.

1 Introduction

2 Deracemization by Dynamic Kinetic Resolution (DKR)/Dynamic Kinetic Asymmetric Transformation (DYKAT)

2.1 DKR towards the Control of Central Chirality

2.2 DYKAT towards the Control of Central Chirality

2.3 DKR/DYKAT towards the Control of Axial Chirality

3 Deracemization Involving a Stereoconvergent Transformation

4 Conclusion

 
  • References

    • 1a Faber K. Chem. Eur. J. 2001; 7: 5004
    • 1b Steinreiber J, Faber K, Griengl H. Chem. Eur. J. 2008; 14: 8060
  • 2 Hoyos P, Pace V, Alcántara AR. Adv. Synth. Catal. 2012; 354: 2585
  • 3 Hayashi T, Tajika M, Tamao K, Kumada M. J. Am. Chem. Soc. 1976; 98: 3718
  • 4 Hayashi T, Konishi M, Fukushima M, Mise T, Kagotani M, Tajika M, Kumada M. J. Am. Chem. Soc. 1982; 104: 180
  • 5 Lloyd-Jones GC, Butts CP. Tetrahedron 1998; 54: 901
  • 6 Briones JF, Davies HM. L. J. Am. Chem. Soc. 2013; 135: 13314
    • 7a Dornan PK, Kou KG. M, Houk KN, Dong VM. J. Am. Chem. Soc. 2014; 136: 291
    • 7b Kou KG. M, Dong VM. Org. Biomol. Chem. 2015; 13: 5844
  • 8 Trost BM, Bunt RC. J. Am. Chem. Soc. 1994; 116: 4089
  • 9 Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
  • 10 Trost BM, Fandrick DR, Dinh DC. J. Am. Chem. Soc. 2005; 127: 14186
  • 11 Trost BM, Toste FD. J. Am. Chem. Soc. 2003; 125: 3090
  • 12 Trost BM, Tsui H.-C, Toste FD. J. Am. Chem. Soc. 2000; 122: 3534
  • 13 Trost BM, Bunt RC, Lemoine RC, Calkins TL. J. Am. Chem. Soc. 2000; 122: 5968
  • 14 Trost BM, Thaisrivongs DA. J. Am. Chem. Soc. 2008; 130: 14092
  • 15 You H, Rideau E, Sidera M, Fletcher SP. Nature 2015; 517: 351
  • 16 Du L, Cao P, Xing J, Lou Y, Jiang L, Li L, Liao J. Angew. Chem. Int. Ed. 2013; 52: 4207
  • 17 Kawatsura M, Terasaki S, Minakawa M, Hirakawa T, Ikeda K, Itoh T. Org. Lett. 2014; 16: 2442
  • 18 Ikeda K, Futamura T, Hanakawa T, Minakawa M, Kawatsura M. Org. Biomol. Chem. 2016; 14: 3501
  • 19 Tabuchi S, Hirano K, Miura M. Angew. Chem. Int. Ed. 2016; 55: 6973
  • 20 Zhao G.-L, Ullah F, Deiana L, Lin S, Zhang Q, Sun J, Ibrahem I, Dziedzic P, Córdova A. Chem. Eur. J. 2010; 16: 1585
  • 21 Zhang Z, Bender CF, Widenhoefer RA. J. Am. Chem. Soc. 2007; 129: 14148
  • 22 Tran DN, Cramer N. Angew. Chem. Int. Ed. 2013; 52: 10630

    • For recent reviews see:
    • 23a Wencel-Delord J, Panossian A, Leroux FR, Colobert F. Chem. Soc. Rev. 2015; 44: 3418
    • 23b Ma G, Sibi MP. Chem. Eur. J. 2015; 21: 11644
    • 23c Bringmann G, Price Mortimer AJ, Keller PA, Gresser MJ, Garner J, Breuning M. Angew. Chem. Int. Ed. 2005; 44: 5384
    • 23d Baudoin O. Eur. J. Org. Chem. 2005; 4223
    • 23e Wang H. Chirality 2010; 22: 827
    • 23f Kozlowski MC, Morgan BJ, Linton EC. Chem. Soc. Rev. 2009; 38: 3193
    • 23g Bringmann G, Gulder T, Gulder TA. M, Breuning M. Chem. Rev. 2011; 111: 563
    • 23h Zhang D, Wang Q. Coord. Chem. Rev. 2015; 286: 1
  • 24 Ros A, Estepa B, Romírez-López P, Álvarez E, Fernández R, Lassaletta JM. J. Am. Chem. Soc. 2013; 135: 15730
  • 25 Bhat V, Wang S, Stoltz BM, Virgil SC. J. Am. Chem. Soc. 2013; 135: 16829
  • 26 Wesch T, Leroux FR, Colobert F. Adv. Synth. Catal. 2013; 355: 2139
  • 27 Hazra CK, Dherbassy Q, Wencel-Delord J, Colobert F. Angew. Chem. Int. Ed. 2014; 53: 13871
  • 28 Dherbassy Q, Schwertz G, Chessé M, Hazra CK, Wencel-Delord J, Colobert F. Chem. Eur. J. 2016; 22: 1735
  • 29 Dherbassy Q, Wencel-Delord J, Colobert F. Tetrahedron 2016; 72 in press; DOI: 10.1016/j.tet.2016.03.060
  • 30 Ma Y.-N, Zhang H.-Y, Yang S.-D. Org. Lett. 2015; 17: 2034
  • 31 Zheng J, You S.-L. Angew. Chem. Int. Ed. 2014; 53: 13244
  • 32 Zheng J, Cui W.-J, Zheng C, You S.-L. J. Am. Chem. Soc. 2016; 138: 5242
  • 33 Fischer C, Fu GC. J. Am. Chem. Soc. 2005; 127: 4594
    • 34a Arp FO, Fu GC. J. Am. Chem. Soc. 2005; 127: 10482
    • 34b Son S, Fu GC. J. Am. Chem. Soc. 2008; 130: 2756
    • 34c Dai X, Strotman NA, Fu GC. J. Am. Chem. Soc. 2008; 130: 3302
    • 34d Saito B, Fu GC. J. Am. Chem. Soc. 2008; 130: 6694
    • 34e Lundin PM, Fu GC. J. Am. Chem. Soc. 2010; 132: 11027
    • 34f Choi J, Martin-Gago P, Fu GC. J. Am. Chem. Soc. 2014; 136: 12161
  • 35 Zultanski SL, Fu GC. J. Am. Chem. Soc. 2011; 133: 15362
  • 36 Liang Y, Fu GC. J. Am. Chem. Soc. 2015; 137: 9523
  • 37 Liang Y, Fu GC. J. Am. Chem. Soc. 2014; 136: 5520
  • 38 Caeiro J, Sestelo JP, Sarandeses LA. Chem. Eur. J. 2008; 14: 741
    • 39a Tellis JC, Primer DN, Molander GA. Science 2014; 345: 433
    • 39b Primer DN, Karakaya I, Tellis JC, Molander GA. J. Am. Chem. Soc. 2015; 137: 2195
  • 40 Gutierrez O, Tellis JC, Primer DN, Molander GA, Kozlowski MC. J. Am. Chem. Soc. 2015; 137: 4896
  • 41 Moriya K, Knochel P. Org. Lett. 2014; 16: 924