Synthesis 2016; 48(18): 2969-2980
DOI: 10.1055/s-0035-1562439
short review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Transition-Metal-Catalyzed Iodination of Arenes

Nikki L. Sloan
WestCHEM, School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK   Email: [email protected]
,
Andrew Sutherland*
WestCHEM, School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 22 April 2016

Accepted: 12 May 2016

Publication Date:
20 June 2016 (online)


Abstract

Aryl and heteroaryl iodides are ubiquitous synthetic building blocks used in a wide range of transformations including coupling and radical reactions. These compounds are also found as components of many pharmaceutically active agents and used for medical imaging. Due to their importance, a range of transition-metal-catalyzed methods have recently been developed for their efficient preparation. This short review gives an overview of the progress made and highlights the benefits of transition-metal-catalyzed methods over more traditional approaches.

1 Introduction

2 Halogen-Exchange Reactions

3 Copper-Catalyzed Iodination Using Boronic Acids and Esters

4 Electrophilic Aromatic Substitution

4.1 Gold-Catalyzed Reactions

4.2 Indium-, Iron-, and Silver-Catalyzed Reactions

5 Iodination via C–H Activation

5.1 Palladium-Catalyzed Reactions

5.2 Rhodium-, Ruthenium-, and Cobalt-Catalyzed Reactions

5.3 Copper-Catalyzed Reactions

6 Iododecarboxylation

7 Conclusions

 
  • References

  • 2 Gribble GW. J. Chem. Educ. 2004; 81: 1441

    • For example, see:
    • 3a Sintas JA, Vitale AA. J. Labelled Compd. Radiopharm. 1999; 42: 409
    • 3b Shi J, Damjanoska KJ, Singh RK, Carrasco GA, Garcia F, Grippo AJ, Landry M, Sullivan NR, Battaglia G, Muma NA. J. Pharmacol. Exp. Ther. 2007; 323: 248
    • 3c Yu B, Becnel J, Zerfaoui M, Rohatgi R, Boulares H, Nichols CD. J. Pharmacol. Exp. Ther. 2008; 327: 316
    • 3d Rice KD, Aay N, Anand NK, Blazey CM, Bowles OJ, Bussenius J, Costanzo S, Curtis JK, Defina SC, Dubenko L, Engst S, Joshi AA, Kennedy AR, Kim AI, Koltun ES, Lougheed JC, Manalo J.-CL, Martini J.-F, Nuss JM, Peto CJ, Tsang TH, Yu P, Johnston S. ACS Med. Chem. Lett. 2012; 3: 416
    • 4a Adam MJ, Wilbur DS. Chem. Soc. Rev. 2005; 34: 153
    • 4b Pimlott SL, Sutherland A. Chem. Soc. Rev. 2011; 40: 149
  • 5 A review was recently published outlining methods for the bromination of aromatic and heteroaromatic compounds: Voskressensky LG, Golantsov NE, Maharramov AM. Synthesis 2016; 48: 615
  • 6 Larock RC. Comprehensive Organic Transformations . 2nd ed. Wiley-VCH; New York: 1999: 619-626
    • 7a Hodgson HH. Chem. Rev. 1947; 40: 251
    • 7b Galli C. Chem. Rev. 1988; 88: 765
  • 8 Snieckus V. Chem. Rev. 1990; 90: 879

    • Modified versions of the Sandmeyer reaction have been developed that can be done under relatively mild conditions. For example, see:
    • 9a Krasnokutskaya EA, Semenischeva NI, Filimonov VD, Knochel P. Synthesis 2007; 81
    • 9b Filimonov VD, Semenischeva NI, Krasnokutskaya EA, Tretyakov AN, Hwang HY, Chi K.-W. Synthesis 2008; 185
    • 9c Gorlushko DA, Filimonov VD, Krasnokutskaya EA, Semenischeva NI, Go BS, Hwang HY, Cha EH, Chi K.-W. Tetrahedron Lett. 2008; 49: 1080
    • 9d Filimonov VD, Trusova M, Postnikov P, Krasnokutskaya EA, Lee YM, Hwang HY, Kim H, Chi K.-W. Org. Lett. 2008; 10: 3961
    • 9e Trusova ME, Krasnokutskaya EA, Postnikov PS, Choi Y, Chi K.-W, Filimonov VD. Synthesis 2011; 2154
  • 10 Song S, Sun X, Li X, Yuan Y, Jiao N. Org. Lett. 2015; 17: 2886
  • 11 Li L, Liu W, Zeng H, Mu X, Cosa G, Mi Z, Li C.-J. J. Am. Chem. Soc. 2015; 137: 8328
  • 12 Sheppard TD. Org. Biomol. Chem. 2009; 7: 1043 ; and references therein
  • 13 Casitas A, Canta M, Solà M, Costas M, Ribas X. J. Am. Chem. Soc. 2011; 133: 19386

    • For example, see:
    • 14a Lindley J. Tetrahedron 1984; 40: 1433
    • 14b Yang SH, Li CS, Cheng CH. J. Org. Chem. 1987; 52: 691
  • 15 Klapars A, Buchwald SL. J. Am. Chem. Soc. 2002; 124: 14844
  • 16 Chen M, Ichikawa S, Buchwald SL. Angew. Chem. Int. Ed. 2015; 54: 263
    • 17a Takagi K, Hayama N, Okamoto T. Chem. Lett. 1978; 191
    • 17b Takagi K, Hayama N, Inokawa S. Bull. Chem. Soc. Jpn. 1980; 53: 3691
  • 18 Meyer G, Rollin Y, Perichon J. Tetrahedron Lett. 1986; 27: 3497
  • 19 Cant AA, Bhalla R, Pimlott SL, Sutherland A. Chem. Commun. 2012; 48: 3993
  • 20 Cant AA, Champion S, Bhalla R, Pimlott SL, Sutherland A. Angew. Chem. Int. Ed. 2013; 52: 7829
  • 21 Shen X, Hyde AM, Buchwald SL. J. Am. Chem. Soc. 2010; 132: 14076
  • 22 Imazaki Y, Shirakawa E, Ueno R, Hayashi T. J. Am. Chem. Soc. 2012; 134: 14760
  • 23 Thathagar MB, Rothenberg G. Org. Biomol. Chem. 2006; 4: 111
  • 24 Thiebes C, Prakash GK. S, Petasis NA, Olah GA. Synlett 1998; 141
  • 25 Niu L, Zhang H, Yang H, Fu H. Synlett 2014; 25: 995
  • 26 Tramutola F, Chiummiento L, Funicello M, Lupattelli P. Tetrahedron Lett. 2015; 56: 1122
  • 27 Tale RH, Toradmal GK, Gopula VB, Rodge AH, Pawar RP, Patil KM. Tetrahedron Lett. 2015; 56: 2699
  • 28 Kabalka GW, Mereddy AR. Tetrahedron Lett. 2004; 45: 343
  • 29 Yang H, Li Y, Jiang M, Wang J, Fu H. Chem.–Eur. J. 2011; 17: 5652
  • 30 Tale RH, Toradmal GK, Gopula VB. RSC Adv. 2015; 5: 84910
  • 31 Partridge BM, Hartwig JF. Org. Lett. 2013; 15: 140
  • 32 Mo F, Yan JM, Qiu D, Li F, Zhang Y, Wang J. Angew. Chem. Int. Ed. 2010; 49: 2028
  • 33 Qiu D, Mo F, Zheng Z, Zhang Y, Wang J. Org. Lett. 2010; 12: 5474
  • 34 Regioselective iodination of arylboronic acids using stoichiometric silver(I) and iodine has also been reported: Al-Zoubi RM, Hall DG. Org. Lett. 2010; 12: 2480
  • 35 Leboeuf D, Ciesielski J, Frontier AJ. Synlett 2014; 25: 399
  • 36 Zhou C.-Y, Li J, Peddibhotla S, Romo D. Org. Lett. 2010; 12: 2104
  • 37 Tanemura K, Suzuki T, Nishida Y, Satsumabayashi K, Horaguchi T. Chem. Lett. 2003; 32: 932
  • 38 Kitagawa H, Shibata T, Matsuo J.-i, Mukaiyama T. Bull. Chem. Soc. Jpn. 2002; 75: 339
  • 39 Racys DT, Warrilow CE, Pimlott SL, Sutherland A. Org. Lett. 2015; 17: 4782
  • 40 Racys DT, Sharif SA. I, Pimlott SL, Sutherland A. J. Org. Chem. 2016; 81: 772
  • 41 Antoniotti S, Dalla V, Duñach E. Angew. Chem. Int. Ed. 2010; 49: 7860

    • For some recent reviews, see:
    • 42a Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 42b Ackermann L. Chem. Rev. 2011; 111: 1315
    • 42c Wencel-Delord J, Dröge T, Liu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
  • 43 Kalyani D, Dick AR, Anani WQ, Sanford MS. Org. Lett. 2006; 8: 2523
  • 44 Kalyani D, Dick AR, Anani WQ, Sanford MS. Tetrahedron 2006; 62: 11483
  • 45 Giri R, Chen X, Yu J.-Q. Angew. Chem. Int. Ed. 2005; 44: 2112
  • 46 Mei T.-S, Giri R, Maugel N, Yu J.-Q. Angew. Chem. Int. Ed. 2008; 47: 5215
  • 47 Mei T.-S, Wang D.-H, Yu J.-Q. Org. Lett. 2010; 12: 3140
    • 48a Li J.-J, Giri R, Yu J.-Q. Tetrahedron 2008; 64: 6979
    • 48b Wang X.-C, Hu Y, Bonacorsi S, Hong Y, Burrell R, Yu J.-Q. J. Am. Chem. Soc. 2013; 135: 10326
  • 49 Li J.-J, Mei T.-S, Yu J.-Q. Angew. Chem. Int. Ed. 2008; 47: 6452
  • 50 Nack WA, He G, Zhang S.-Y, Lu C, Chen G. Org. Lett. 2013; 15: 3440 . This work showed that a Pd(OAc)2-catalyzed iodination of aryl-derived picolinamides can be done, although HBF4·OEt2 was more efficient
  • 51 Ma X.-T, Tian S.-K. Adv. Synth. Catal. 2013; 355: 337
  • 52 Du B, Jiang X, Sun P. J. Org. Chem. 2013; 78: 2786
  • 53 Sadhu P, Alla SK, Punniyamurthy T. J. Org. Chem. 2013; 78: 6104
  • 54 Tian Q, Chen X, Liu W, Wang Z, Shi S, Kuang C. Org. Biomol. Chem. 2013; 11: 7830
  • 55 Kramer JJ. P, Yildiz C, Nieger M, Bräse S. Eur. J. Org. Chem. 2014; 1287
  • 56 Gao D.-W, Gu Q, You S.-L. ACS Catal. 2014; 4: 2741
  • 57 Lu C, Zhang S.-Y, He G, Nack WA, Chen G. Tetrahedron 2014; 70: 4197
  • 58 Bhattarai BT, Adhikari S, Kimball EA, Moore JN, Shaughnessy KH, Snowden TS, Fronczek FR, Dolliver DD. Tetrahedron Lett. 2014; 55: 4801
  • 59 Dudnik AS, Chernyak N, Huang C, Gevorgyan V. Angew. Chem. Int. Ed. 2010; 49: 8729
  • 60 Huang C, Chernyak N, Dudnik AS, Gevorgyan V. Adv. Synth. Catal. 2011; 353: 1285
  • 61 Sarkar D, Melkonyan FS, Gulevich AV, Gevorgyan V. Angew. Chem. Int. Ed. 2013; 52: 10800
  • 62 Schröder N, Wencel-Delord J, Glorius F. J. Am. Chem. Soc. 2012; 134: 8298
  • 63 Schröder N, Lied F, Glorius F. J. Am. Chem. Soc. 2015; 137: 1448
  • 64 Hwang H, Kim J, Jeong J, Chang S. J. Am. Chem. Soc. 2014; 136: 10770
  • 65 Ding Q, Zhou X, Pu S, Cao B. Tetrahedron 2015; 71: 2376
  • 66 Zhang P, Hong L, Li G, Wang R. Adv. Synth. Catal. 2015; 357: 345
  • 67 Wang L, Ackermann L. Chem. Commun. 2014; 50: 1083
  • 68 Yu D.-G, Gensch T, de Azambuja F, Vásquez-Céspedes S, Glorius F. J. Am. Chem. Soc. 2014; 136: 17722
  • 69 Li B, Liu B, Shi B.-F. Chem. Commun. 2015; 51: 5093
  • 70 The Shi group have recently reported an extension of this reaction using nickel(II) catalysis with lithium iodide under oxidative conditions: Zhan B.-B, Liu Y.-H, Hu F, Shi B.-F. Chem. Commun. 2016; 52: 4934
  • 71 Xu J, Zhu X, Zhou G, Ying B, Ye P, Su L, Shen C, Zhang P. Org. Biomol. Chem. 2016; 14: 3016
  • 72 Johnson RG, Ingham RK. Chem. Rev. 1956; 56: 219
  • 73 Kulbitski K, Nisnevich G, Gandelman M. Adv. Synth. Catal. 2011; 353: 1438 ; and references therein
  • 74 Cornella J, Rosillo-Lopez M, Larrosa I. Adv. Synth. Catal. 2011; 353: 1359
  • 75 Fu Z, Li Z, Song Y, Yang R, Liu Y, Cai H. J. Org. Chem. 2016; 81: 2794
  • 76 Al-Zoubi RM, Al-Mughaid H, Al-Zoubi MA, Jaradat KT, MacDonald R. Eur. J. Org. Chem. 2015; 5501
    • 77a Xue L, Su W, Lin Z. Dalton Trans. 2010; 39: 9815
    • 77b Xue L, Su W, Lin Z. Dalton Trans. 2011; 40: 11926