Synlett 2016; 27(15): 2183-2200
DOI: 10.1055/s-0035-1562360
account
© Georg Thieme Verlag Stuttgart · New York

Addressing the Challenges in Suzuki–Miyaura Cross-Couplings by Ligand Design

Chengxi Li, Dongping Chen, Wenjun Tang*
  • State Key Laboratory of Bio-Organic & Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. of China   Email: tangwenjun@sioc.ac.cn
Further Information

Publication History

Received: 30 March 2016

Accepted after revision: 01 May 2016

Publication Date:
23 June 2016 (eFirst)

Abstract

Despite the increasing applicability of cross-couplings in organic synthesis, there remain many challenging issues. In the past years, we have designed and developed several classes of conformationally well-defined monophosphorus ligands: (1) bulky biaryl monophosphorus ligands such as BI-DIME and AntPhos; (2) bulky monophosphorus ligands with a second coordination site such as P,P=O ligands; (3) P-chiral monophosphorus ligands. These phosphorus ligands have enabled efficient sterically hindered aryl-aryl and aryl-alkyl cross-couplings, sterically hindered aryl-isopropyl cross-couplings, and asymmetric ary-aryl cross-couplings. The high reactivity, chemoselectivity, and enantioselectivity achieved in these reactions have allowed practical applications in total synthesis of natural products and drug molecules, leading to an efficient synthesis of a key gossypol intermediate, and, for the first time, asymmetric catalytic synthesis of korupensamine A, korupensamine B, and michellamine B.

1 Introduction

2 Sterically Hindered Aryl–Aryl Cross-Couplings

3 Sterically Hindered Aryl–Alkyl Cross-Couplings

4 Asymmetric Suzuki-Miyaura Cross-Couplings

5 Applications in the Syntheses of Natural Products and Drug Molecules

6 Conclusions

 
  • References


    • Selected reviews on Suzuki–Miyaura couplings:
    • 1a Suzuki A. J. Organomet. Chem. 1999; 576: 147
    • 1b Miyaura N. Top. Curr. Chem. 2002; 219: 11
    • 1c Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
    • 1d Hassan J, Sévignon M, Gozzi C, Schulz E, Lemaire M. Chem. Rev. 2002; 102: 1359
    • 1e Kotha S, Lahiri K, Kashinath D. Tetrahedron 2002; 58: 9633
    • 1f Littke AF, Fu GC. Angew. Chem. Int. Ed. 2002; 41: 4176
    • 1g Bellina F, Carpita A, Rossi R. Synthesis 2004; 2419
    • 1h Nicolaou KC, Bulger PG, Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4442
    • 1i Alonso F, Beletskaya IP, Yus M. Tetrahedron 2008; 64: 3047
    • 1j Metal-Catalyzed Cross-Coupling Reactions . Vol. 2. de Meijere A, Diederich F. Wiley-VCH; Weinheim; 2004
    • 1k Modern Arylation Methods . Ackermann L. Wiley-VCH; Weinheim; 2009
    • 1l Molander GA, Canturk B. Angew. Chem. Int. Ed. 2009; 48: 9240
    • 1m Seechurn CC. C. J, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
    • 1n Lundgren RJ, Stradiotto M. Chem. Eur. J. 2012; 18: 9758
    • 2a Liu G, Xu G, Luo R, Tang W. Synlett 2013; 24: 2465
    • 2b Xu G, Zhao Q, Tang W. Chin. J. Org. Chem. 2014; 34: 1919
  • 3 Tang W, Qu B, Capacci AG, Rodriguez S, Wei X, Haddad N, Narayanan B, Ma S, Grinberg N, Yee NK, Krishnamurthy D, Senanayake CH. Org. Lett. 2010; 12: 176
  • 4 Dai C, Fu GC. J. Am. Chem. Soc. 2001; 123: 2719
    • 5a Yin JJ, Rainka MP, Zhang X-X, Buchwald SL. J. Am. Chem. Soc. 2002; 124: 1162
    • 5b Barder TF, Walker SD, Martinelli JR, Buchwald SL. J. Am. Chem. Soc. 2005; 127: 4085
    • 5c Martin R, Buchwald SL. Acc. Chem. Res. 2008; 41: 1461
  • 6 Tang W, Capacci AG, Wei X, Li W, White A, Patel ND, Savoie J, Gao JJ, Rodriguez S, Qu B, Haddad N, Lu BZ, Krishnamurthy D, Yee NK, Senanayake CH. Angew. Chem. Int. Ed. 2010; 49: 5879
  • 7 Zhao Q, Senanayake CH, Tang W. Chem. Eur. J. 2013; 19: 2261
  • 8 Tang W, Keshipeddy S, Zhang Y, Wei X, Savoie J, Patel ND, Yee NK, Senanayake CH. Org. Lett. 2011; 13: 1366
  • 9 Jana R, Pathak TP, Sigman MS. Chem. Rev. 2011; 111: 1417
  • 10 Li C, Xiao G, Zhao Q, Liu H, Wang T, Tang W. Org. Chem. Front. 2014; 1: 225
  • 11 Vila C, Giannerini M, Hornillos V, Fañanás-Mastral M, Feringa BL. Chem. Sci. 2014; 5: 1361
  • 12 Li C, Chen T, Li B, Xiao G, Tang W. Angew. Chem. Int. Ed. 2015; 54: 3792

    • For recent reviews, see:
    • 13a Bringmann G, Gulder T, Gulder TA. M, Breuning M. Chem. Rev. 2011; 111: 563
    • 13b Cherney AH, Kadunce NT, Reisman SE. Chem. Rev. 2015; 115: 9587
    • 13c Zhang D, Wang Q. Coord. Chem. Rev. 2015; 286: 1
    • 13d Loxq P, Manoury E, Poli R, Deydier E, Labande A. Coord. Chem. Rev. 2016; 308: 131
  • 14 Tang W, Patel ND, Xu G, Xu X, Savoie J, Ma S, Hao M.-H, Keshipeddy S, Capacci AG, Wei X, Zhang Y, Gao JJ, Li W, Rodriguez S, Lu BZ, Yee NK, Senanayake CH. Org. Lett. 2012; 14: 2258
  • 15 Xu G, Fu W, Liu G, Senanayake CH, Tang W. J. Am. Chem. Soc. 2014; 136: 570
  • 16 Yang X, Xu G, Tang W. Tetrahedron 2015; in press; DOI:10 1016/j.tet.2015 12 051
    • 17a Meyers AI, Willemsen JJ. Chem. Commun. 1997; 1573
    • 17b Li L, Liu Y, Wang Q. Eur. J. Org. Chem. 2013; 8014
  • 18 Bringmann G, Pokorny F In The Alkaloids . Vol. 46, 127. Cordell GA. Academic Press; New York; 1995