Synthesis 2016; 48(16): 2581-2594
DOI: 10.1055/s-0035-1561972
special topic
© Georg Thieme Verlag Stuttgart · New York

The Attractive Application of Lactol Chemistry: From Racemic Lactol to Natural Product Skeleton

Pin-Wen Cai
a  School of Life Science and Engineering, SouthwestJiaotong University, Chengdu, Sichuan 610031, P. R. of China
,
Zhi-Hao You
b  Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. of China   Email: liuyankai@ouc.edu.cn
,
Liang-Hui Xie
b  Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. of China   Email: liuyankai@ouc.edu.cn
,
Rui Tan*
a  School of Life Science and Engineering, SouthwestJiaotong University, Chengdu, Sichuan 610031, P. R. of China
,
Zhi-Ping Tong*
a  School of Life Science and Engineering, SouthwestJiaotong University, Chengdu, Sichuan 610031, P. R. of China
,
Yan-Kai Liu*
b  Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, P. R. of China   Email: liuyankai@ouc.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 16 January 2016

Accepted after revision: 04 March 2016

Publication Date:
08 April 2016 (eFirst)

Abstract

A versatile methodology involving the use of substituted racemic lactols as nucleophiles in the enamine-based asymmetric reactions leading to functionalized lactones with multiple stereogenic centers as one single diastereoisomer is reported. Importantly, the desired products could be easily transformed into asymmetric 2,4,5-trisubstituted piperidine derivatives, which are present in numerous alkaloid products but difficult to prepare optically enriched. Moreover, although starting from racemic precursors, the stereoisomeric products were discretely provided by simple column chromatography, which could meet the requirements of atom economy and efficiency.

Supporting Information

 
  • References

  • 1 Kisakürek MV, Leeuwenberg AJ. M, Hesse M. Alkaloids: Chemical and Biological Perspectives . Pelletier SW. Wiley; New York: 1993. Chap. 5
    • 2a Bosch J, Rubiralta M, Domingo A, Bolos J, Linares A, Minguillon C, Amat M, Bonjoch J. J. Org. Chem. 1985; 50: 1516
    • 2b Amat M, Linares A, Bosch J. J. Org. Chem. 1990; 55: 6299
    • 2c Amat M, Sathyanarayana S, Hadida S, Bosch J. Tetrahedron Lett. 1994; 35: 7123
    • 2d Shin K, Moriya M, Ogasawara K. Tetrahedron Lett. 1998; 39: 3765
    • 3a Bergonzini G, Melchiorre P. Angew. Chem. Int. Ed. 2012; 51: 971
    • 3b Retini M, Bergonzini G, Melchiorre P. Chem. Commun. 2012; 48: 3336
    • 4a Liu Y.-K, Li Z.-L, Li J.-Y, Feng H.-X, Tong Z.-P. Org. Lett. 2015; 17: 2022
    • 4b Feng H.-X, Tan R, Liu Y.-K. Org. Lett. 2015; 17: 3794
    • 5a Zhu Y, Qian P, Yang J, Chen S, Hu Y, Wu P, Wang W, Zhang W, Zhang S. Org. Biomol. Chem. 2015; 13: 4769
    • 5b Wang J, Qian P, Hua Y, Yang J, Jiang J, Chen S, Zhang Y, Zhang S. Tetrahedron Lett. 2015; 56: 2875
  • 6 List B, Lerner RA, Barbas CF. J. Am. Chem. Soc. 2000; 122: 2395

    • For selected reviews, see:
    • 7a Trost BM, Brindle CS. Chem. Soc. Rev. 2010; 39: 1600
    • 7b Roca-Lopez D, Sadaba D, Delso I, Herrera RP, Tejero T, Merino P. Tetrahedron: Asymmetry 2010; 21: 2561
    • 7c Xu L.-W, Li L, Shi X.-H. Adv. Synth. Catal. 2010; 352: 243
    • 7d Nielsen M, Worgull D, Zweifel T, Gschwend B, Bertelsen S, Jørgensen KA. Chem. Commun. 2011; 47: 632
    • 7e Melchiorre P. Angew. Chem. Int. Ed. 2012; 51: 9748
    • 7f Giacalone F, Gruttadauria M, Agrigento P, Noto R. Chem. Soc. Rev. 2012; 41: 2406
    • 7g Jensen KL, Dickmeiss G, Jiang H, Albrecht L, Jørgensen KA. Acc. Chem. Res. 2012; 45: 248
    • 7h Jiang H, Albrecht L, Jørgensen KA. Chem. Sci. 2013; 4: 2287
    • 7i Deng Y, Kumar S, Wang H. Chem. Commun. 2014; 50: 4272
    • 7j Desmarchelier A, Coeffard V, Moreau X, Greck C. Tetrahedron 2014; 70: 2491
    • 7k Hogdson DM, Charlton A. Tetrahedron 2014; 70: 2207
    • 7l Mlynarski J, Bas S. Chem. Soc. Rev. 2014; 43: 577
    • 7m Duan J, Li P. Catal. Sci. Technol. 2014; 4: 311

      For leading examples on the aminocatalytic Michael addition of free aldehydes to nitroolefins, see:
    • 8a Wang W, Wang J, Li H. Angew. Chem. Int. Ed. 2005; 44: 1369
    • 8b Hayashi Y, Gotoh H, Hayashi T, Shoji M. Angew. Chem. Int. Ed. 2005; 44: 4212
    • 8c Bonne D, Salat L, Dulcère JP, Rodriguez J. Org. Lett. 2008; 10: 5409
    • 8d García-García P, Ladépêche A, Halder R, List B. Angew. Chem. Int. Ed. 2008; 47: 4719
    • 8e Ruiz N, Reyes E, Vicario JL, Badía D, Carrillo L, Uria U. Chem. Eur. J. 2008; 14: 9357
    • 8f Belot S, Massaro A, Tenti A, Mordini A, Alexakis A. Org. Lett. 2008; 10: 4557
    • 8g Chi Y, Guo L, Kopf NA, Gellman SH. J. Am. Chem. Soc. 2008; 130: 5608
    • 8h Zhu S, Yu S, Ma D. Angew. Chem. Int. Ed. 2008; 47: 545
  • 9 Donslund BS, Johansen TK, Poulsen PH, Halskov KS, Jørgensen KA. Angew. Chem. Int. Ed. 2015; 54: 1386 ; and references cited therein
  • 10 See Supporting Information for more details of reaction optimization studies.
  • 11 CCDC 1447176 (5u′) and CCDC 1447177 (5v′) contain the supplementary crystallographic data for these compounds. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
  • 12 Abbasov ME, Hudson BM, Tantillo DJ, Romo D. J. Am. Chem. Soc. 2014; 136: 4492
  • 13 Zheng B, Wang H, Han Y, Liu C, Peng Y. Chem. Commun. 2013; 49: 4561
  • 14 Unfortunately, we failed to open the lactone unit in 8 with alcohol to finally generate a 2-indolyl-4-carboxylate piperidine structure. Indeed, benzylamine worked well with 8 affording 2-indolyl-4-carboxamide 12, which is a potential precursor of 2-indolyl-4-carboxylate piperidine structure.
    • 15a Seebach D, Golinski J. Helv. Chim. Acta 1981; 64: 1413
    • 15b Andrey O, Alexakis A, Tomassini A, Bernardinelli G. Adv. Synth. Catal. 2004; 346: 1147