Synthesis 2016; 48(12): 1872-1879
DOI: 10.1055/s-0035-1561856
special topic
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed C–H Activation and Cyclization of Anilides with 2-Iodoacetates and 2-Iodobenzoates: An Efficient Method toward Oxindoles and Phenanthridones

Parthasarathy Gandeepan
Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan   Email: chcheng@mx.nthu.edu.tw
,
Pachaiyappan Rajamalli
Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan   Email: chcheng@mx.nthu.edu.tw
,
Chien-Hong Cheng*
Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan   Email: chcheng@mx.nthu.edu.tw
› Author Affiliations
Further Information

Publication History

Received: 10 January 2016

Accepted after revision: 02 March 2016

Publication Date:
10 May 2016 (online)


Abstract

A concise approach to the synthesis of oxindoles and phenanthridones from anilides is described. In the presence of catalytic amount of Pd(OAc)2, 2-iodoacetates and 2-iodobenzoates can be used to functionalize ortho C–H bond of anilides, which subsequently undergo intramolecular cyclization to give the products. A possible reaction mechanism that involves a PdII/PdIV catalytic cycle is proposed with the support of detailed mechanistic studies.

Supporting Information

 
  • References

    • 1a Yu J.-Q, Shi Z. C–H Activation. Springer; New York: 2010
    • 1b Pérez PJ. Alkane C–H Activation by Single-Site Metal Catalysis. Springer; New York: 2012
    • 1c Ribas X. C–H and C–X Bond Functionalization: Transition Metal Mediation. RSC Publishing; Cambridge: 2013
    • 1d Li JJ. C–H BondActivation in Organic Synthesis. Taylor & Francis Group; Boca Raton: 2015
    • 1e Shi Z. Homogeneous Catalysis for Unreactive Bond Activation. Wiley; Hoboken, New Jersey: 2015
    • 1f Catalytic Transformations via C–H Activation 1. In Science of Synthesis. Yu J.-Q. Georg Thieme Verlag; Stuttgart: 2015
    • 2a Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
    • 2b Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 2c Ackermann L. Org. Process Res. Dev. 2015; 19: 260
    • 2d Gandeepan P, Cheng C.-H. Chem. Asian J. 2015; 10: 824
    • 2e Liu C, Yuan J, Gao M, Tang S, Li W, Shi R, Lei A. Chem. Rev. 2015; 115: 12138
    • 2f Shin K, Kim H, Chang S. Acc. Chem. Res. 2015; 48: 1040
    • 2g Su B, Cao Z.-C, Shi Z.-J. Acc. Chem. Res. 2015; 48: 886
    • 3a Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 3b Baudoin O. Chem. Soc. Rev. 2011; 40: 4902
    • 3c Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
    • 3d Chen G, Nack W. Synlett 2015; 26: 2505
    • 3e Topczewski JJ, Sanford MS. Chem. Sci. 2015; 6: 70
    • 3f Shaikh TM, Hong F.-E. J. Organomet. Chem. 2016; 801: 139
    • 4a Thirunavukkarasu VS, Parthasarathy K, Cheng C.-H. Angew. Chem. Int. Ed. 2008; 47: 9462
    • 4b Gandeepan P, Parthasarathy K, Cheng C.-H. J. Am. Chem. Soc. 2010; 132: 8569
    • 4c Karthikeyan J, Cheng C.-H. Angew. Chem. Int. Ed. 2011; 50: 9880
    • 4d Gandeepan P, Cheng C.-H. Org. Lett. 2013; 15: 2084
  • 5 Yan G, Borah AJ, Wang L, Yang M. Adv. Synth. Catal. 2015; 357: 1333
    • 6a Phillipson JD, Rungsiyakul D, Shellard EJ. Phytochemistry 1973; 12: 2043
    • 6b Palmisano G, Annunziata R, Papeo G, Sisti M. Tetrahedron: Asymmetry 1996; 7: 1
    • 6c Huang A, Kodanko JJ, Overman LE. J. Am. Chem. Soc. 2004; 126: 14043
    • 6d Ready JM, Reisman SE, Hirata M, Weiss MM, Tamaki K, Ovaska TV, Wood JL. Angew. Chem. Int. Ed. 2004; 43: 1270
    • 6e Galliford CV, Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 8748
    • 6f Zhang Z, Di Y.-T, Wang Y.-H, Zhang Z, Mu S.-Z, Fang X, Zhang Y, Tan C.-j, Zhang Q, Yan X.-H, Guo J, Li C.-S, Hao X.-J. Tetrahedron 2009; 65: 4551
    • 6g Singh A, Roth GP. Tetrahedron Lett. 2012; 53: 4889
    • 6h Wanner MJ, Ingemann S, van Maarseveen JH, Hiemstra H. Eur. J. Org. Chem. 2013; 1100
    • 7a Natarajan A, Guo Y, Harbinski F, Fan Y.-H, Chen H, Luus L, Diercks J, Aktas H, Chorev M, Halperin JA. J. Med. Chem. 2004; 47: 4979
    • 7b Cerchiaro G, da Costa Ferreira AM. J. Braz. Chem. Soc. 2006; 17: 1473
    • 7c Jiang T, Kuhen KL, Wolff K, Yin H, Bieza K, Caldwell J, Bursulaya B, Tuntland T, Zhang K, Karanewsky D, He Y. Bioorg. Med. Chem. Lett. 2006; 16: 2109
    • 7d Silva BV, Ribeiro NM, Pinto AC, Vargas MD, Dias LC. J. Braz. Chem. Soc. 2008; 19: 1244
    • 7e Millemaggi A, Taylor RJ. K. Eur. J. Org. Chem. 2010; 4527
    • 7f Rudrangi SR. S, Bontha VK, Manda VR, Bethi S. Asian J. Res. Chem. 2011; 4: 335
    • 8a Ziarani GM, Gholamzadeh P, Lashgari N, Hajiabbasi P. ARKIVOC 2013; (i): 470
    • 8b Cheng D, Ishihara Y, Tan B, Barbas CF. ACS Catal. 2014; 4: 743
    • 9a Wolfe JF, Sleevi MC, Goehring RR. J. Am. Chem. Soc. 1980; 102: 3646
    • 9b Jones K, Thompson M, Wright C. J. Chem. Soc., Chem. Commun. 1986; 115
    • 9c Bowman WR, Heaney H, Jordan BM. Tetrahedron Lett. 1988; 29: 6657
    • 9d Jones K, Wilkinson J, Ewin R. Tetrahedron Lett. 1994; 35: 7673
    • 9e Beckwith AL. J, Storey JM. D. J. Chem. Soc., Chem. Commun. 1995; 977
    • 9f Cabri W, Candiani I, Colombo M, Franzoi L, Bedeschi A. Tetrahedron Lett. 1995; 36: 949
    • 9g Li X, Xu X, Hu P, Xiao X, Zhou C. J. Org. Chem. 2013; 78: 7343
    • 9h Wang H, Guo L.-N, Duan X.-H. Chem. Commun. 2013; 49: 10370
    • 10a El Ali B, Okuro K, Vasapollo G, Alper H. J. Am. Chem. Soc. 1996; 118: 4264
    • 10b Lee S, Hartwig JF. J. Org. Chem. 2001; 66: 3402
    • 11a Wang D, Liu W, Yi F, Zhao Y, Chen J. Org. Biomol. Chem. 2016; 14: 1921
    • 11b Reddy BV. S, Reddy CR, Reddy MR, Yarlagadda S, Sridhar B. Org. Lett. 2015; 17: 3730
    • 11c Dastbaravardeh N, Toba T, Farmer ME, Yu J.-Q. J. Am. Chem. Soc. 2015; 137: 9877
    • 11d Shi S, Liu W, He P, Kuang C. Org. Biomol. Chem. 2014; 12: 3576
    • 11e Misal Castro LC, Chatani N. Chem. Eur. J. 2014; 20: 4548
    • 11f Wan J.-C, Huang J.-M, Jhan Y.-H, Hsieh J.-C. Org. Lett. 2013; 15: 2742
    • 11g Liang Z, Feng R, Yin H, Zhang Y. Org. Lett. 2013; 15: 4544
    • 11h Scarborough CC, McDonald RI, Hartmann C, Sazama GT, Bergant A, Stahl SS. J. Org. Chem. 2009; 74: 2613
  • 12 Hardtmann GE. US Patent 4160032, 1979
    • 13a Karthikeyan J, Cheng C.-H. Angew. Chem. Int. Ed. 2011; 50: 9880
    • 13b Karthikeyan J, Haridharan R, Cheng C.-H. Angew. Chem. Int. Ed. 2012; 51: 12343
    • 13c Senthilkumar N, Parthasarathy K, Gandeepan P, Cheng C.-H. Chem. Asian J. 2013; 8: 2175
    • 13d Pimparkar S, Jeganmohan M. Chem. Commun. 2014; 50: 12116
  • 14 CCDC 1443927 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336 033; E-mail: deposit@ccdc.cam.ac.uk.
  • 15 Gandeepan P, Cheng C.-H. Catalytic Transformations via C–H Activation 1. In Science of Synthesis. Yu JQ. Georg Thieme Verlag; Stuttgart: 2015: 69-92
    • 16a Martin RB, Parcell A, Hedrick RI. J. Am. Chem. Soc. 1964; 86: 2406
    • 16b Satterthwait AC, Jencks WP. J. Am. Chem. Soc. 1974; 96: 7018
    • 16c Wu J, Xiang S, Zeng J, Leow M, Liu X.-W. Org. Lett. 2015; 17: 222
  • 17 Stuart DR, Bertrand-Laperle MG, Burgess KM. N, Fagnou K. J. Am. Chem. Soc. 2008; 130: 16474