Synthesis 2017; 49(01): 1-16
DOI: 10.1055/s-0035-1561625
short review
© Georg Thieme Verlag Stuttgart · New York

Secondary Alkyl Groups in Palladium-Catalyzed Cross-Coupling Reactions

Zafar Qureshi
Department of Chemistry, Davenport Research Laboratories, University of Toronto, 80 St. George St., Toronto ON M5S 3H6, Canada   Email: [email protected]toronto.ca
,
Christina Toker
Department of Chemistry, Davenport Research Laboratories, University of Toronto, 80 St. George St., Toronto ON M5S 3H6, Canada   Email: [email protected]
,
Mark Lautens*
Department of Chemistry, Davenport Research Laboratories, University of Toronto, 80 St. George St., Toronto ON M5S 3H6, Canada   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 28 March 2016

Accepted: 02 April 2016

Publication Date:
27 April 2016 (online)


This review is dedicated to Professor Dieter Enders on the occasion of his 70th birthday.

Abstract

Important classes of cross-coupling reactions are those leading to the incorporation of secondary alkyl groups. While early work in cross-coupling focused mainly on primary alkyl groups, the past decade has seen significant advances in introducing secondary and tertiary groups. This review will focus on the advances made in recent years referencing landmark publications where necessary. Expansion of scope, ease of reaction setup, and mechanistic considerations will be stressed. Applications of methodologies towards complex scaffolds and natural products will be also be evaluated.

1 Introduction

2.1 Suzuki Coupling

2.2 Mizoroki–Heck Coupling

2.3 Stille Coupling

2.4 Sonagashira Coupling

2.5 Kumada Coupling

2.6 Negishi Coupling

2.7 Hiyama Coupling

2.8 Lithium Coupling

2.9 Titanium Coupling

2.10 C–H Activation

3 Conclusion

 
  • References


    • For recent reviews see:
    • 1a Rudolph A, Lautens M. Angew. Chem. Int. Ed. 2009; 48: 2656
    • 1b Kambe N, Iwasaki T, Terao J. Chem. Soc. Rev. 2011; 40: 4937
    • 1c Jana R, Pathak TP, Sigman MS. Chem. Rev. 2011; 111: 1417
    • 1d Swift EC, Jarvo ER. Tetrahedron 2013; 69: 5799
  • 3 Stille JK, Lau KS. Y. Acc. Chem. Res. 1977; 10: 434
  • 4 Lundgren RJ, Stradiotto M. Chem. Eur. J. 2012; 18: 9758
  • 5 Hildebrand JP, Marsden SP. Synlett 1996; 893
  • 6 Wang X.-Z, Deng M.-Z. J. Chem. Soc., Perkin Trans. 1 1996; 2663
  • 7 Charette AB, Perceira Da Freitas-Gil R. Tetrahedron Lett. 1997; 38: 2809
  • 9 Molander GA. J. Org. Chem. 2015; 80: 7837
  • 10 Charette AB, Giroux A. J. Org. Chem. 1996; 61: 8718
  • 11 He A, Falck JR. J. Am. Chem. Soc. 2010; 132: 2524
  • 12 Stille JK. The Metal–Carbon Bond . Vol. 2. Hartley FR, Patai S. Wiley; New York: 1985: 625-787
  • 13 Stokes BJ, Opra SM, Sigman MS. J. Am. Chem. Soc. 2012; 134: 11408
  • 14 Stokes BJ, Bischoff AJ, Sigman MS. Chem. Sci. 2014; 5: 2336
  • 15 Li C, Chen T, Li B, Xiao G, Tang W. Angew. Chem. Int. Ed. 2015; 54: 3792
    • 16a Meyers AI, Willemsen JJ. Chem. Commun. 1997; 1573
    • 16b Dodou K, Anderson RJ, Lough WJ, Small DA. P, Shelley MD, Groundwater PW. Bioorg. Med. Chem. 2005; 13: 4228
    • 16c Wei J, Jagt DL. V, Royer RE, Deck LM. Tetrahedron Lett. 2010; 51: 5757
    • 16d Li L, Liu Y, Wang Q. Eur. J. Org. Chem. 2013; 8014
    • 17a Heck RF. J. Am. Chem. Soc. 1968; 90: 5518
    • 17b Heck RF. J. Am. Chem. Soc. 1968; 90: 5526
    • 17c Mizoroki T, Mori K, Ozaki A. Bull. Chem. Soc. Jpn. 1971; 44: 581
    • 17d Heck RF, Nolley JP. J. Org. Chem. 1972; 37: 2320
  • 18 McCartney D, Guiry PJ. Chem. Soc. Rev. 2011; 40: 5122
  • 19 Zhou W, An G, Zhang G, Han J, Pan Y. Org. Biomol. Chem. 2011; 9: 5833
    • 20a Bloome KS, McMahen RL, Alexanian EJ. J. Am. Chem. Soc. 2011; 133: 20146
    • 20b McMhon CM, Alexanian EJ. Angew. Chem. Int. Ed. 2014; 53: 5974
  • 21 Zou Y, Zhou J. Chem. Commun. 2014; 50: 3725
  • 22 Kimbrough RD. Environ. Health Perspect. 1976; 14: 51
  • 23 Cordovilla C, Bartolomé C, Martínez-Ilarduya JM, Espinet P. ACS Catal. 2015; 5: 3040
  • 24 Sustmann R, Lau J, Zipp M. Tetrahedron Lett. 1986; 27: 5207
  • 25 Bhatt RK, Shin D.-S, Falck JR. Tetrahedron Lett. 1992; 33: 4885
  • 26 Ye J, Bhatt RK, Falck JR. J. Am. Chem. Soc. 1994; 116: 1
  • 27 Belosludtsev YY, Bhatt RK, Falck JR. Tetrahedron Lett. 1995; 36: 5881
  • 28 Labadie JW, Stille JK. J. Am. Chem. Soc. 1983; 105: 6129
  • 29 Goli M, He A, Falck JR. Org. Lett. 2011; 13: 344
  • 30 Kells KW, Chong JM. J. Am. Chem. Soc. 2004; 126: 15666
  • 31 Kang JY, Connell BT. J. Org. Chem. 2011; 76: 6856
  • 32 Li L, Wang C.-Y, Huang R, Biscoe MR. Nat. Chem. 2013; 5: 607
    • 33a Vedejs E, Haight AR, Moss WO. J. Am. Chem. Soc. 1992; 114: 6556
    • 33b Jensen MS, Yang C, Hsiao Y, Rivera N, Wells KM, Chung JY. L, Yasuda N, Hughes DL, Reider PL. Org. Lett. 2000; 2: 1081
    • 34a Beak P, Kerrick ST, Wu S, Chu J. J. Am. Chem. Soc. 1994; 116: 3231
    • 34b Beak P, Basu A, Gallagher DJ, Park YS, Thayumanavan S. Acc. Chem. Res. 1996; 29: 552
  • 35 Altenhoff G, Würtz S, Glorius F. Tetrahedron Lett. 2006; 47: 2925
  • 36 Valente C, Çalimsiz S, Hoi KH, Mallik D, Sayah M, Organ MG. Angew. Chem. Int. Ed. 2012; 51: 3314
  • 37 Hayashi T, Konishi M, Kumada M. Tetrahedron Lett. 1979; 21: 1871
    • 38a Hayashi T, Konishi M, Kobori Y, Kumada M, Higuchi T, Hirotsu K. J. Am. Chem. Soc. 1984; 106: 158
    • 38b Yuan K, Scott WJ. Tetrahedron Lett. 1989; 30: 4779
    • 38c Knappke CE. I, Wangelin AJ. Chem. Soc. Rev. 2011; 40: 4948
  • 39 Hayashi T, Konishi M, Fukushima M, Mise T, Kagotani M, Tajika M, Kumada M. J. Am. Chem. Soc. 1982; 104: 180
  • 40 Hoffman RW. Chem. Soc. Rev. 2003; 32: 225
  • 41 Huerta FF, Minidis AB. E, Bäckvall J.-E. Chem. Soc. Rev. 2001; 30: 321
  • 42 López-Pérez A, Adrio J, Carretero JC. Org. Lett. 2009; 11: 5514
  • 43 Negishi E, Valente LF, Kobayashi M. J. Am. Chem. Soc. 1980; 102: 3298
  • 44 Hayashi T, Hagihara T, Katsuro Y, Kumada M. Bull. Chem. Soc. Jpn. 1983; 56: 363
    • 45a Thaler T, Haag B, Gavryushin A, Schober K, Hartmann E, Gschwind RM, Zipse H, Mayer P, Knochel P. Nat. Chem. 2010; 2: 125
    • 45b Moriya K, Knochel P. Org. Lett. 2014; 16: 924
    • 46a Krasovskiy A, Duplais C, Lipshutz BH. J. Am. Chem. Soc. 2009; 131: 15592
    • 46b Krasovskiy A, Duplais C, Lipshutz BH. Org. Lett. 2010; 12: 4742
    • 46c Duplais C, Krasovskiy A, Lipshutz BH. Organometallics 2011; 30: 6090
    • 47a Çalimsiz S, Organ MG. Chem. Commun. 2011; 47: 5181
    • 47b Pompeo M, Froese RD. J, Hadei N, Organ MG. Angew. Chem. Int. Ed. 2012; 51: 11354
    • 48a Han C, Buchwald SL. J. Am. Chem. Soc. 2009; 131: 7532
    • 48b Yang Y, Niedermann K, Han C, Buchwald SL. Org. Lett. 2014; 16: 4638
  • 49 Harada T, Kotani Y, Katsuhira T, Oku A. Tetrahedron Lett. 1991; 32: 1573
  • 50 Wang D, Zhang Z. Org. Lett. 2003; 5: 4545
  • 51 Mori Y, Seki M. Tetrahedron Lett. 2004; 45: 7343
  • 52 Cherney AH, Reisman SE. Tetrahedron 2014; 70: 3259
  • 53 Nakao Y, Takeda M, Matsumoto T, Hiyama T. Angew. Chem. Int. Ed. 2010; 49: 4447
  • 54 Giannerini M, Fañanás-Mastral M, Feringa BL. Nat. Chem. 2013; 5: 667
  • 55 Vila C, Giannerini M, Hornillos V, Fañanás-Mastral M, Feringa BL. Chem. Sci. 2014; 5: 1361
  • 56 Chen C.-R, Zhou S, Biradar DB, Gau H.-M. Adv. Synth. Catal. 2010; 352: 1718
    • 57a Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 57b Giri A, Thapa S, Kafle A. Adv. Synth. Catal. 2014; 356: 1395
  • 58 Zaitsev VG, Shabashov D, Daugulis O. J. Am. Chem. Soc. 2005; 127: 13154
  • 59 Reddy BV. S, Reddy LR, Corey EJ. Org. Lett. 2006; 8: 3391
  • 60 Chen K, Hu F, Zhang S.-Q, Shi B.-F. Chem. Sci. 2013; 4: 3906
    • 61a Feng Y, Wang Y, Landgraf B, Chen G. Org. Lett. 2010; 12: 3414
    • 61b Zhang S.-Q, He G, Nack WA, Zhao Y, Li Q, Chen G. J. Am. Chem. Soc. 2013; 135: 2124
    • 61c Zhang S.-Q, Li Q, He G, Nack WA, Chen G. J. Am. Chem. Soc. 2015; 137: 531
  • 62 Chen K, Li Z.-W, Shen P.-X, Zhao H.-W, Shi Z.-J. Chem. Eur. J. 2015; 21: 7389
  • 63 Yan S.-B, Zhang S, Duan W.-L. Org. Lett. 2015; 17: 2458
  • 64 Chen X, Goodhue CE, Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 12634
  • 65 Wasa M, Engle KE, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 3680
  • 66 Wasa M, Engle KE, Lin DW, Yoo EJ, Yu J.-Q. J. Am. Chem. Soc. 2011; 133: 19598
  • 67 Ladd CL, Roman DS, Charette AB. Org. Lett. 2013; 15: 1350
  • 68 Roman DS, Charette AB. Org. Lett. 2013; 15: 4394
  • 69 Ladd CL, Belouin AV, Charette AB. J. Org. Chem. 2016; 81: 256
    • 70a Nakanishi M, Katayev D, Besnard C, Kündig EP. Angew. Chem. Int. Ed. 2011; 50: 7438
    • 70b Anas S, Cordi A, Kagan HB. Chem. Commun. 2011; 47: 11483
  • 71 Larionov E, Nakanishi M, Katayev D, Besnard C, Kündig EP. Chem. Sci. 2013; 4: 1995
    • 72a Katayev D, Nakanishi M, Bürgi T, Kündig EP. Chem. Sci. 2012; 3: 1422
    • 72b Katayev D, Larionov E, Nakanishi M, Besnard C, Kündig EP. Chem. Eur. J. 2014; 20: 15021
  • 73 Saget T, Lemouzy SJ, Cramer N. Angew. Chem. Int. Ed. 2012; 51: 2238
    • 74a Surry DS, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 6338
    • 74b Martin R, Buchwald SL. Acc. Chem. Res. 2008; 41: 1461
    • 74c Surry DS, Buchwald SL. Chem. Sci. 2011; 2: 27
  • 75 Saget T, Cramer N. Angew. Chem. Int. Ed. 2012; 51: 12842
  • 76 Pedroni J, Boghi M, Saget T, Cramer N. Angew. Chem. Int. Ed. 2014; 53: 9064
  • 77 Xiao B, Liu Z.-J, Liu L, Fu Y. J. Am. Chem. Soc. 2013; 135: 616
  • 78 Wu X, See JW. T, Xu K, Hirao H, Roger J, Hierso J.-C, Zhou J. Angew. Chem. Int. Ed. 2014; 53: 13573
  • 79 Venning AR. O, Bohan PT, Alexanian EJ. J. Am. Chem. Soc. 2015; 137: 3731
  • 80 Holstein PM, Vogler M, Larini P, Pilet G, Clot E, Baudoin O. ACS. Catal. 2015; 5: 4300
  • 81 Catellani M, Frignani F, Rangoni A. Angew. Chem. Int. Ed. 1997; 36: 119
    • 82a Lautens M, Alberico D, Bressy C, Fang Y.-Q, Mariampillai B, Wilhelm T. Pure Appl. Chem. 2006; 78: 351
    • 82b Martins A, Mariampillai B, Lautens M. Top. Curr. Chem. 2010; 292: 1
    • 82c Ye J, Lautens M. Nat. Chem. 2015; 7: 863
  • 83 Catellani M, Cugini F. Tetrahedron 1999; 55: 6595
  • 84 Catellani M, Motti E, Minari M. Chem. Commun. 2000; 157
    • 85a Rudolph A, Rackelmann N, Lautens M. Angew. Chem. Int. Ed. 2007; 46: 1485
    • 85b Rudolph A, Rackelmann N, Turcotte-Savard M.-O, Lautens M. J. Org. Chem. 2009; 74: 289
  • 86 Qureshi Z, Schlundt W, Lautens M. Synthesis 2015; 47: 2446