Synthesis 2016; 48(13): 2050-2056
DOI: 10.1055/s-0035-1561601
psp
© Georg Thieme Verlag Stuttgart · New York

An Expeditious Synthesis of 8-Methoxy-1-tetralone

Norma Castillo-Rangel
Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México D.F., México   Email: [email protected]
,
José Oscar H. Pérez-Díaz
Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México D.F., México   Email: [email protected]
,
Alfredo Vázquez*
Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México D.F., México   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 16 February 2016

Accepted after revision: 14 March 2016

Publication Date:
20 April 2016 (online)


Abstract

8-Methoxy-1-tetralone was synthesized in a concise and efficient manner involving a sequential palladium-mediated cross-coupling reaction (Heck), catalytic hydrogenation, and intramolecular acylation mediated by Eaton’s reagent or Lewis acids. The pivotal step in the synthesis was the use of a bromine substituent at the benzenoid C4 position of the intermediate methyl 4-arylbutyric ester to ensure cyclization ortho to the methoxy moiety and obviate cyclization at the para position to the thermodynamically preferred 6-methoxy-1-tetralone, the sole product obtained in the absence of this blocking group.

Supporting Information

 
  • References

    • 1a Wu TS, Tsai YL, Damu AG, Kuo PC. J. Nat. Prod. 2002; 65: 1522
    • 1b Hussein AA, Bozzi B, Correa M, Capson TL, Kursar TA, Coley P.-D, Solis P.-N, Gupta MP. J. Nat. Prod. 2003; 66: 858
    • 2a Quang DN, Hashmoto T, Tanaka M, Baumgartner M, Stadler M, Asakawa Y. J. Nat. Prod. 2002; 65: 1869
    • 2b Fronza M, Murillo R, Ślusarczyk S, Adams M, Hamburger M, Heinzmann B, Laufer S, Merfort I. Bioorg. Med. Chem. 2011; 19: 4876
  • 3 Vukics K, Fodor T, Fischer J, Fellegvári I, Lévai S. Org. Process Res. Dev. 2002; 6: 82
  • 4 Deshpande MN, Cain MH, Patel SR, Singan PR, Brown D, Gupta A, Barkalow J, Callen G, Patel K, Koops R, Chorghade M, Foote H, Pariza R. Org. Process Res. Dev. 1998; 2: 351
    • 5a Lee S, Frescas S, Nichols D. Synth. Commun. 1995; 25: 2775
    • 5b Langlois M, Gaudy F. Synth. Commun. 1992; 22: 1723
  • 6 Yang RV, Kizer D, Wu H, Volckova E, Miao XS, Ali SM, Tandom M, Savage RE, Chan TC. K, Ashwell MA. Bioorg. Med. Chem. 2008; 16: 5635
  • 7 Jagtap PG, Degterev A, Choi S, Keys H, Yuan J, Cuny GD. J. Med. Chem. 2007; 50: 1886
  • 8 Aboraia AS, Makowski B, Bahja A, Prosser D, Brancale A, Jones G, Simons C. Eur. J. Med. Chem. 2010; 45: 4427
  • 9 Legoabe LJ, Petzer A, Petzer JP. Bioorg. Med. Chem. Lett. 2014; 24: 2758
  • 10 Miyashita K, Sakai T, Imanishi T. Org. Lett. 2003; 5: 2683
  • 11 Hernández-Romero Y, Rojas JI, Castillo R, Rojas A, Mata R. J. Nat. Prod. 2004; 67: 160
  • 12 Matos MA. R, Sousa CC. S, Morais VM. F. J. Chem. Thermodyn. 2009; 41: 69
    • 13a Tarnchompoo B, Thebtaranounth C, Thebtaranounth Y. Synthesis 1986; 785
    • 13b The starting material was synthesized in 5 steps and 86% overall yield according to: Hauser FM, Pogany SA. Synthesis 1980; 814
    • 14a Date M, Wanatabe M, Furukawa S. Chem. Pharm. Bull. 1990; 38: 902
    • 14b Banerjee AK, Bedoya L, Adherían ME, Vera WJ, Cabrera EV, Kariney ER. J. Chem. Res. 2010; 34: 522
    • 14c Cabrera EV, Banerjee AK. Org. Prep. Proced. Int. 2010; 42: 499
    • 14d The starting material for ref. 14c was synthesized in 3 steps and 71% overall yield according to: Yanagi T, Kikuchi K, Takeuchi H, Ishikawa T, Nishimura T, Kamijo T, Yamamoto I. Chem. Pharm. Bull. 2001; 49: 340
  • 15 Yu J, Zhao H, Liang S, Bao X, Zhu C. Org. Biomol. Chem. 2015; 13: 7924
  • 16 Eaton PE, Carlson GR, Lee JT. J. Org. Chem. 1973; 38: 4071
    • 17a Esteban G, López-Sánchez LA, Martínez ME, Plumet J. Tetrahedron 1998; 54: 197
    • 17b Hiroki K, Hatori M, Yamashita H, Sugiyama J. Chem. Lett. 2008; 37: 320
    • 18a Fillion E, Fishlock D, Wilsily A, Goll JM. J. Org. Chem. 2005; 70: 1316
    • 18b Cui DM, Kawamura M, Shimada S, Hayashi T, Tanaka M. Tetrahedron Lett. 2003; 44: 4007
  • 19 Plevyak JE, Dickerson JE, Heck RF. J. Org. Chem. 1979; 44: 4078
  • 20 Chang HK, Datta S, Das A, Odedia A, Liu RS. Angew. Chem. Int. Ed. 2007; 46: 4744
  • 21 Zhao H, Vandenbosche CP, Koenig SG, Singh SP, Bakale RP. Org. Lett. 2008; 10: 505
  • 22 Preparation of single crystals was carried out by slow evaporation of a solution of 11 in CDCl3 at room temperature. Crystal data for 11: C11H13NO2, triclinic, space group P1, a = 8.1735(6) Å, b = 8.2652(7) Å, c = 8.5188(7) Å, α = 71.855(7)°, β = 87.558(6)°, γ = 62.847(8)°, Z = 2, μ (Cu Kα) = 0.091 mm–1. Crystallographic data have been deposited at the Cambridge Crystallographic Data Centre, no. CCDC 1022796. Copies of the data can be obtained free of charge by writing to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; E-mail: [email protected]
  • 23 Jaeschke G, Seebach D. J. Org. Chem. 1998; 63: 1190
  • 24 Granger R, Corbier M, Vinas J, Nau P. C. R. Hebd. Seances Acad. Sci. 1957; 244: 1376