Synthesis 2016; 48(12): 1855-1864
DOI: 10.1055/s-0035-1561423
special topic
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Substituted Pyrrolo[2,1-a]isoquinolines by Gold-Catalyzed Domino Cyclization of Alkynyl Iminoesters

Kenji Sugimoto
a  Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan   Email: matsuya@pha.u-toyama.ac.jp
,
Yuya Hoshiba
a  Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan   Email: matsuya@pha.u-toyama.ac.jp
,
Kiyoshi Tsuge
b  Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
,
Yuji Matsuya*
a  Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan   Email: matsuya@pha.u-toyama.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 28 January 2016

Accepted: 23 February 2016

Publication Date:
13 April 2016 (eFirst)

Abstract

A novel gold-catalyzed double cyclization leading to a biologically important pyrroloisoquinoline skeleton was established. The reaction sequence involving 6-exo-dig cyclization of alkynyl iminoester and [3+2] cycloaddition of azomethine ylide proceeded smoothly in the presence of 0.5–1.0 mol% (CyJohnPhos)AuCl/AgOTf at 65 or 80 °C. This strategy with (–)-phenylmenthol-derived iminoester enables a generation of chiral azomethine ylide in situ to construct an optically active pyrroloisoquinoline in a highly diastereoselective manner. An alkyne and alkenes with electron-withdrawing group could be utilized as dipolarophiles. Iminoesters having terminal and internal alkynes were applied as reaction substrates to afford the corresponding pyrroloisoquinolines.

Supporting Information

 
  • References

    • 1a Boekelheide V. Alkaloids 1960; 7: 201
    • 1b Hill RK. Alkaloids 1967; 9: 483
  • 2 Chung S.-H, Yook J, Min BJ, Lee JY, Lee YS, Jin C. Arch. Pharm. Res. 2000; 23: 353
  • 3 Maryanoff BE, McComsey DF, Gardocki JF, Shank RP, Costanzo MJ, Nortey SO, Schneider CR, Selter PE. J. Med. Chem. 1987; 30: 1433
    • 4a Schell FM, Smith AM. Tetrahedron Lett. 1983; 24: 1883
    • 4b Orito K, Matsuzaki T, Suginome H, Rodrigo R. Heterocycles 1988; 27: 2403
  • 5 Zhang Q, Tu G, Zhao Y, Cheng T. Tetrahedron 2002; 58: 6795
  • 6 Kluza J, Marchetti P, Bailly C In Modern Alkaloids: Structure, Isolation, Synthesis and Biology . Fattorusso E, Taglialatela-Scafati O. Wiley-VCH; Weinheim: 2008: 171
    • 7a Facompré M, Tardy C, Bal-Mahieu C, Colson P, Perez C, Manzanares I, Cuevas C, Bailly C. Cancer Res. 2003; 63: 7392
    • 7b Kluza J, Gallego MA, Loyens A, Beauvillain JC, Sousa-Faro JM, Cuevas C, Marchetti P, Bailly C. Cancer Res. 2006; 66: 3177
    • 8a Boekelheide V, Godfrey JC. J. Am. Chem. Soc. 1953; 75: 3679
    • 8b Iketubosin GO, Mathieson DW. J. Pharm. Pharmacol. 1963; 15: 810
    • 8c Saito S, Tanaka T, Kotera K, Nakai H, Sugimoto N, Horii Z.-I, Ikeda M, Tamura Y. Chem. Pharm. Bull. 1965; 13: 786
    • 8d Hershenson FM. J. Org. Chem. 1975; 40: 740
    • 8e Morlacchi F, Losacco V. J. Heterocycl. Chem. 1976; 13: 165
    • 8f Tsuda Y, Sakai Y, Kaneko M, Ishiguro Y. Heterocycles 1981; 15: 431
    • 8g Maryanoff BF, McComsey DF. J. Heterocycl. Chem. 1985; 22: 911
    • 8h Maryanoff BF, McComsey DF, Almond HR. Jr, Mutter MS, Bemins GW, Whittle RR, Olofson RA. J. Org. Chem. 1986; 51: 1341
    • 8i Maryanoff BF, McComsey DF, Mutter MS, Sorgi KL, Maryanoff CA. Tetrahedron Lett. 1988; 29: 5073
    • 8j Sorgi KL, Maryanoff CA, McComsey DF, Graden DW, Maryanoff BE. J. Am. Chem. Soc. 1990; 112: 3567
    • 8k Lete E, Egiarte A, Sotomayor N, Vicente T, Villa M.-J. Synlett 1993; 41
    • 8l Grigg R, Rankovic Z, Thornton-Pett M, Somasunderam A. Tetrahedron 1993; 49: 8679
    • 8m Lee YS, Kang DW, Lee SJ, Park H. J. Org. Chem. 1995; 60: 7149
    • 8n Banwell M, Hockless D. Chem. Commun. 1997; 33: 2259
    • 8o Heim A, Terpin A, Steglich W. Angew. Chem. Int. Ed. 1997; 36: 155
    • 8p Boger DL, Boyce CW, Labroli MA, Sehon CA, Jin Q. J. Am. Chem. Soc. 1998; 121: 54
    • 8q Pearson WH, Fang W. J. Org. Chem. 2000; 65: 7158
    • 8r Okamoto S, Teng X, Fujii S, Takayama Y, Sato F. J. Am. Chem. Soc. 2001; 123: 3462
    • 8s Itoh T, Miyazaki M, Nagata K, Yokoya M, Nakamura S, Ohsawa A. Heterocycles 2002; 58: 115
    • 8t Ridley CP, Reddy MV. R, Rocha G, Bushman FD, Faulkner DJ. Bioorg. Med. Chem. 2002; 10: 3285
    • 8u Cironi P, Manzanares I, Albericio F, Álvarez M. Org. Lett. 2003; 5: 2959
    • 8v Itoh T, Nagata K, Yokoya M, Miyazaki M, Kameoka K, Nakamura S, Ohsawa A. Chem. Pharm. Bull. 2003; 51: 951
    • 8w Ploypradith P, Mahidol C, Sahakitpichan P, Wongbundit S, Ruchirawat S. Angew. Chem. Int. Ed. 2004; 43: 866
    • 8x Handy ST, Zhang Y, Bregman H. J. Org. Chem. 2004; 69: 2362
    • 8y Ploypradith P, Kagan RK, Ruchirawat S. J. Org. Chem. 2005; 70: 5119
    • 8z Knölker H.-J, Agarwal S. Tetrahedron Lett. 2005; 46: 1173
    • 8aa Su S, Porco JA. Jr. J. Am. Chem. Soc. 2007; 129: 7744
    • 8ab Ohta T, Fukuda T, Ishibashi F, Iwao M. J. Org. Chem. 2009; 74: 8143
    • 8ac Li Q, Jiang J, Fan A, Cui Y, Jia Y. Org. Lett. 2010; 13: 312

      For recent reports, see:
    • 9a Yu C, Zhang Y, Zhang S, Li H, Wang W. Chem. Commun. 2011; 47: 1036
    • 9b Zou Y.-Q, Lu L.-Q, Fu L, Chang N.-J, Rong J, Chen J.-R, Xiao W.-J. Angew. Chem. Int. Ed. 2011; 50: 7171
    • 9c Rueping M, Leonori D, Poisson T. Chem. Commun. 2011; 47: 9615
    • 9d Ackermann L, Wang L, Lygin AV. Chem. Sci. 2012; 3: 177
    • 9e Huang L, Zhao J. Chem. Commun. 2013; 49: 3751
    • 9f Wang H.-T, Lu C.-D. Tetrahedron Lett. 2013; 54: 3015
    • 9g Guo S, Zhang H, Huang L, Guo Z, Xiong G, Zhao J. Chem. Commun. 2013; 49: 8689
    • 9h Huang H.-M, Li Y.-J, Ye Q, Yu W.-B, Han L, Jia J.-H, Gao J.-R. J. Org. Chem. 2014; 79: 1084
  • 10 Sugimoto K, Yamamoto N, Tominaga D, Matsuya Y. Org. Lett. 2015; 17: 1320
  • 11 Mézailles N, Richard L, Gagosz F. Org. Lett. 2005; 7: 4133
  • 12 CCDC 1449971 contains the supplementary crystallographic data for 18·HCl. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336 033; E-mail: deposit@ccdc.cam.ac.uk.

    • Phenylmenthyl glycine iminoester for diastereoselective 1,3-dipolar cycloaddition, see:
    • 13a Deprez P, Royer J, Husson H.-P. Tetrahedron: Asymmetry 1991; 2: 1189

    • For 8-phenylmenthyl group-induced diastereoselectivity in Diels–Alder reaction, see:
    • 13b Corey EJ, Ensley HE. J. Am. Chem. Soc. 1975; 97: 3528
    • 13c Oppolzer W, Kurth M, Reichlin D, Chapuis C, Mohnhaupt M, Moffatt F. Helv. Chim. Acta 1981; 64: 2802
    • 13d Stork G, Atwal KS. Tetrahedron Lett. 1983; 24: 3819
  • 14 Besides the isolated [3+2] exo-adduct 22, the corresponding endo-adduct might be formed in the reaction medium, although it could not be isolated as a pure material.
  • 15 Knobloch K, Keller M, Eberbach W. Eur. J. Org. Chem. 2001; 3313
  • 16 Fasth K.-J, Antoni G, Langström B. J. Chem. Soc., Perkin Trans. 1 1988; 3081