Synthesis 2016; 48(11): 1616-1621
DOI: 10.1055/s-0035-1561399
feature
© Georg Thieme Verlag Stuttgart · New York

Pd-Catalyzed Homo Cross-Dehydrogenative Coupling of 2-Arylpyridines by Using I2 as the Sole Oxidant

Wenbo Liu
Department of Chemistry and FQRNT Center for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada   Email: cj.li@mcgill.ca
,
Youquan Zhu
Department of Chemistry and FQRNT Center for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada   Email: cj.li@mcgill.ca
,
Chao-Jun Li*
Department of Chemistry and FQRNT Center for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada   Email: cj.li@mcgill.ca
› Author Affiliations
Further Information

Publication History

Received: 11 January 2016

Accepted after revision: 12 February 2016

Publication Date:
10 March 2016 (online)


Abstract

A palladium-catalyzed homo cross-dehydrogenative coupling (CDC) of 2-arylpyridines via C–H activation is described. This reaction employs I2 as the sole oxidant without any other additives, which complements the hypervalent iodine chemistry, such as of phenyliodonium diacetate (PIDA) or IOAc, in C–H activation research field. A tentative mechanism involving a Pd(II)–Pd(IV) catalytic cycle is proposed to rationalize this homo CDC reaction.

Supporting Information

 
  • References

    • 1a Kotha S, Lahiri K, Kashinath D. Tetrahedron 2002; 58: 9633
    • 1b Hassan J, Sévignon M, Gozzi C, Schulz E, Lemaire M. Chem. Rev. 2002; 102: 1359
    • 1c Tohma H, Morioka H, Takizawa S, Arisawa M, Kita Y. Tetrahedron 2001; 57: 345
    • 2a Littke AF, Dai C, Fu GC. J. Am. Chem. Soc. 2000; 122: 4020
    • 2b Dai C, Fu GC. J. Am. Chem. Soc. 2001; 123: 2719
    • 2c Milne JE, Buchwald SL. J. Am. Chem. Soc. 2004; 126: 13028
    • 3a Murai S, Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, Chatani N. Nature (London) 1993; 366: 529
    • 3b Ritleng V, Sirlin C, Pfeffer M. Chem. Rev. 2002; 102: 1731
    • 3c Dyker G. Angew. Chem. Int. Ed. 1999; 38: 1699
    • 3d Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
    • 4a Li C.-J. Acc. Chem. Res. 2009; 42: 335
    • 4b Li Z, Li C.-J. J. Am. Chem. Soc. 2004; 126: 11810
    • 4c Girard SA, Knauber T, Li C.-J. Angew. Chem. Int. Ed. 2014; 53: 74
    • 5a Cai Z.-J, Wang S.-Y, Ji S.-J. Org. Lett. 2013; 15: 5226
    • 5b Kanth JV. B, Periasamy M. J. Org. Chem. 1991; 56: 5964
  • 6 Wang X.-C, Hu Y, Bonacorsi S, Hong Y, Burrell R, Yu J.-Q. J. Am. Chem. Soc. 2013; 135: 10326
    • 7a Dick AR, Hull KL, Sanford MS. J. Am. Chem. Soc. 2004; 126: 2300
    • 7b Dudnik AS, Chernyak N, Huang C, Gevorgyan V. Angew. Chem. Int. Ed. 2010; 49: 8729
  • 8 Schröder N, Wencel-Delord J, Glorius F. J. Am. Chem. Soc. 2012; 134: 8298
  • 9 Giri R, Chen X, Yu JQ. Angew. Chem. Int. Ed. 2005; 44: 2112
  • 10 Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
  • 11 Dick AR, Sanford MS. Tetrahedron 2006; 62: 2439
  • 12 Hull KL, Lanni EL, Sanford MS. J. Am. Chem. Soc. 2006; 128: 14047
  • 13 Desai LV, Malik HA, Sanford MS. Org. Lett. 2006; 8: 1141
  • 14 Chen X, Dobereiner G, Hao X.-S, Giri R, Maugel N, Yu J.-Q. Tetrahedron 2009; 65: 3085
  • 15 Guo X, Deng G, Li C.-J. Adv. Synth. Catal. 2009; 351: 2071
    • 16a Liu W, Li L, Li C.-J. Nat. Commun. 2015; 6: 6526
    • 16b Liu W, Li L, Chen Z, Li C.-J. Org. Biomol. Chem. 2015; 13: 6170
    • 16c Li L, Liu W, Zeng H, Mu X, Cosa G, Mi Z, Li C.-J. J. Am. Chem. Soc. 2015; 137: 8328
    • 16d Liu W, Chen Z, Li L, Wang H, Li C.-J. Chem. Eur. J. 2016; in press; DOI: 10.1002/chem.201600219
  • 17 Based on our research, higher temperature, longer reaction time and higher concentration produced a higher reaction yield. However, to make a comprimse on these three parameters, we decided to use 110 °C, 0.4 M, and 24 h to optimize the solvent and additive effects.
  • 18 Teskey CJ, Lui AY. W, Greaney MF. Angew. Chem. Int. Ed. 2015; 54: 11677
  • 19 Park J, Chang S. Angew. Chem. Int. Ed. 2015; 54: 14103