Synthesis 2016; 48(07): 987-996
DOI: 10.1055/s-0035-1561343
feature
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Phenanthridines via a Rhodium-Catalyzed C–C Bond Cleavage Reaction of Biphenylene with Nitriles

Aleš Korotvička
a  Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Praha 2, Czech Republic   Email: kotora@natur.cuni.cz
,
David Frejka
a  Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Praha 2, Czech Republic   Email: kotora@natur.cuni.cz
,
Zuzana Hampejsová
a  Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Praha 2, Czech Republic   Email: kotora@natur.cuni.cz
,
Ivana Císařová
b  Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Praha 2, Czech Republic
,
Martin Kotora*
a  Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Praha 2, Czech Republic   Email: kotora@natur.cuni.cz
› Author Affiliations
Further Information

Publication History

Received: 19 November 2015

Accepted after revision: 07 January 2016

Publication Date:
01 February 2016 (online)


Abstract

The reaction of biphenylene with various nitriles in the presence of catalytic amount of [Rh(cod)2BF4]/dppe under microwave irradiation afforded 9-substituted phenanthridines. The reaction with alkyl and aromatic nitriles provided the corresponding 9-substituted phenanthridines in 26–79% isolated yields. The reaction was also carried out with cyanopyridines and it provided heterocyclic compounds with the bipyridine and terpyridine scaffold. The synthesized bipyridine and terpyridine were complexed with [Rh(cod)Cl]2. The former provided a Rh(III) complex in which the cyclooctadiene moiety was oxidized to the tetrahydrofuran ring, whereas the latter gave a structurally fluxional complex (in solution) with only one pyridine ring coordinated to the rhodium atom.

Supporting Information

 
  • References

  • 1 Current address: Apigenex s.r.o., Poděbradská 173/5, 190 00 Praha 9, Czech Republic.
    • 2a Murakami M, Ito Y In Activation of Unreactive Bonds and Organic Synthesis . Vol. 3. Murai S. Springer; Berlin: 1999: 97
    • 2b Nečas D, Kotora M. Curr. Org. Chem. 2007; 11: 1566
    • 2c Seiser T, Cramer N. Org. Biomol. Chem. 2009; 7: 2835
    • 2d Murakami M, Matsuda T. Chem. Commun. 2011; 47: 1100
    • 2e Korotvička A, Nečas D, Kotora M. Curr. Org. Chem. 2012; 16: 1170
    • 2f Ruhland K. Eur. J. Org. Chem. 2012; 2683
    • 2g Souillart L, Cramer N. Chem. Rev. 2015; 115: 9410
    • 3a Perthuisot BL, Edelbach DL, Zubris N, Simhai CN, Iverson C, Müller T, Satoh T, Jones WD. J. Mol. Catal. A: Chem. 2002; 189: 157
    • 3b Steffen A, Ward RM, Jones WD, Marder TB. Coord. Chem. Rev. 2010; 254: 1950
  • 4 Friedman L, Rabideau P. J. Org. Chem. 1968; 33: 451
  • 5 Yeh W.-Y, Hsu SC. N, Peng S.-M, Lee G.-H. Organometallics 1998; 17: 2477
  • 6 Perthuisot C, Edelbach BL, Zubris DL, Jones WD. Organometallics 1997; 16: 2016
    • 7a Iverson CN, Jones WD. Organometallics 2001; 20: 5745
    • 7b Shibata T, Nishizawa G, Endo K. Synlett 2008; 765
    • 7c Chaplin A, Tonner R, Weller AS. Organometallics 2010; 29: 2710
    • 8a Lu Z, Jun C.-H, de Gala SR, Sigalas MP, Eisenstein O, Crabtree RH. J. Chem. Soc., Chem. Commun. 1993; 1877
    • 8b Lu Z, Jun C.-H, de Gala SR, Sigalas MP, Eisenstein O, Crabtree RH. Organometallics 1995; 14: 1168
    • 8c Korotvička A, Císařová I, Roithová J, Kotora M. Chem. Eur. J. 2012; 18: 4200
    • 9a Eisch JJ, Piotrowski AM, Han KI, Krüger C, Tsay YH. Organometallics 1985; 4: 224
    • 9b Schwager H, Spyroudis S, Vollhardt KP. C. J. Organomet. Chem. 1990; 382: 191
    • 9c Edelbach BL, Lachicotte RJ, Jones WD. Organometallics 1999; 18: 4040
    • 9d Edelbach BL, Lachicotte RJ, Jones WD. Organometallics 1999; 18: 4660
    • 9e Schaub T, Radius U. Chem. Eur. J. 2005; 11: 5024
    • 9f Schaub T, Backes M, Radius U. Organometallics 2006; 25: 4196
    • 9g Gu Y, Boursalian GB, Gandon V, Padilla R, Shen H, Timofeeva TV, Tongwa P, Vollhardt KP. C, Yakovenko AA. Angew. Chem. Int. Ed. 2011; 50: 9413
    • 10a Yu K, Li H, Watson EJ, Virkaitis KL, Carpenter GB, Sweigart DA. Organometallics 2001; 20: 3550
    • 10b Edelbach BL, Lachicotte RJ, Jones WD. J. Am. Chem. Soc. 1998; 120: 2843
  • 11 Zhang X, Carpenter GB, Sweigart DA. Organometallics 1999; 18: 4887
  • 12 Wu C.-Y, Horibe T, Jacobsen CB, Toste FD. Nature 2015; 517: 449
    • 13a Deb I, Yoshikai N. Org. Lett. 2013; 15: 4254
    • 13b Tu H.-Y, Liu Y.-R, Chu J.-J, Hu B.-L, Zhang X.-G. J. Org. Chem. 2014; 79: 9907
  • 14 Intrieri D, Mariani M, Caselli A, Ragaini F, Gallo E. Chem. Eur. J. 2012; 18: 10487
    • 15a Sripada L, Teske JA, Deiters A. Org. Biomol. Chem. 2008; 6: 263
    • 15b Li Y, Zhu J, Zhang L, Wu Y, Gong Y. Chem. Eur. J. 2013; 19: 8294
  • 16 Hsieh J.-C, Cheng C.-H. Chem. Commun. 2008; 2992
    • 17a Bowman R, Lyon JE, Pritchard GJ. Synlett 2008; 2169
    • 17b Gerfaud T, Neuville L, Zhu J. Angew. Chem. Int. Ed. 2009; 48: 572
    • 17c Candito DA, Lautens M. Angew. Chem. Int. Ed. 2009; 48: 6713
    • 17d Della Ca’ N, Motti E, Mega A, Catellani M. Adv. Synth. Catal. 2010; 352: 1451
    • 17e Maestri G, Larraufie M.-H, Derat E, Ollivier C, Fensterbank L, Lacote E, Malacria M. Org. Lett. 2010; 12: 5692
    • 17f Ishida N, Nakanishi Y, Moriya T, Murakami M. Chem. Lett. 2011; 40: 1047
    • 17g Peng J, Chen T, Chen C, Li B. J. Org. Chem. 2011; 76: 9507
    • 17h Liang Z, Ju L, Xie Y, Huang L, Zhang Y. Chem. Eur. J. 2012; 18: 15816
    • 17i Blanchot M, Candito DA, Larnaud F, Lautens M. Org. Lett. 2011; 13: 1486
    • 17j Ghosh M, Ahmed A, Singha R, Ray JK. Tetrahedron Lett. 2015; 56: 353
    • 18a Zhang L, Ang GY, Chiba S. Org. Lett. 2010; 12: 3682
    • 18b Chen Y.-F, Hsieh J.-C. Org. Lett. 2014; 16: 4642
    • 19a Chelucci G, Falorni M, Giacomelli G. Synthesis 1990; 1121
    • 19b Falorni M, Chelucci G, Conti S, Giacomelli G. Synthesis 1992; 972
    • 19c Chelucci G.   Tetrahedron: Asymmetry 1995; 6: 811
    • 19d Heller B, Sundermann B, Fischer C, You J, Chen W, Drexler H.-J, Knochel P, Bonrath W, Gutnov A. J. Org. Chem. 2003; 68: 9221
  • 20 In a patent describing the synthesis of 2f, it is indirectly indicated that it might not be stable at high temperatures: Hwang, H.-J., Lim, J.-H. EP 1318148 A1, 2003.

    • For typical examples of chiral N-oxide catalyzed allylations, see:
    • 21a Malkov AV, Orsini M, Pernazza D, Muir KW, Langer V, Meghani P, Kočovský P. Org. Lett. 2002; 4: 1047
    • 21b Malkov AV, Dufková L, Farrugia L, Kočovský P. Angew. Chem. Int. Ed. 2003; 42: 3674
    • 21c Malkov AV, Bell M, Castelluzzo F, Kočovský P. Org. Lett. 2005; 7: 3219
    • 21d Pignataro L, Benaglia M, Annunziata R, Cinquini M, Cozzi F. J. Org. Chem. 2006; 71: 1458
    • 21e Chai Q, Song C, Sun Z, Ma Y, Ma C, Dai Y, Andrus MB. Tetrahedron Lett. 2006; 47: 8611
    • 21f Chelucci G, Baldino S, Pinna GA, Benaglia M, Buffa L, Guizetti S. Tetrahedron 2008; 64: 7574
    • 22a Hrdina R, Valterová I, Hodačová J, Kotora M. Adv. Synth. Catal. 2007; 349: 822
    • 22b Hrdina R, Dračínský M, Valterová I, Hodačová J, Císařová I, Kotora M. Adv. Synth. Catal. 2008; 350: 1449
    • 22c Kadlčíková A, Hrdina R, Valterová I, Kotora M. Adv. Synth. Catal. 2009; 351: 1279
    • 22d Kadlčíková A, Kotora M. Molecules 2009; 14: 2918
    • 22e Kadlčíková A, Valterová I, Ducháčková L, Roithová J, Kotora M. Chem. Eur. J. 2010; 16: 9442
    • 22f Kotora M. Pure Appl. Chem. 2010; 82: 1813
    • 22g Vlašaná K, Hrdina R, Valterová I, Kotora M. Eur. J. Org. Chem. 2010; 7040
    • 22h Motloch P, Valterová I, Kotora M. Adv. Synth. Catal. 2014; 356: 199
    • 22i Hessler F, Korotvička A, Nečas D, Valterová I, Kotora M. Eur. J. Org. Chem. 2014; 2543
    • 22j Hessler F, Betík R, Kadlčíková A, Belle R, Kotora M. Eur. J. Org. Chem. 2014; 7245
    • 22k Cadart T, Koukal P, Kotora M. Eur. J. Org. Chem. 2014; 7556
    • 22l Koukal P, Kotora M. Chem. Eur. J. 2015; 21: 7408

      For application of compounds with the biypridine framework, see:
    • 23a Chelucci G, Thummel RP. Chem. Rev. 2002; 102: 3129
    • 23b Newcomb GR, Patri AK, Holder E, Schubert US. Eur. J. Org. Chem. 2004; 235
  • 24 Lewis FW, Hudson MJ, Harwood LM. Synlett 2011; 2609
    • 25a de Bruin B, Boerakker MJ, Donners JJ. J. M, Christiaans BE. C, Schlebos PP. J, de Gelder R, Smits JM. M, Spek AL, Gal AW. Angew. Chem. Int. Ed. 1997; 36: 2064
    • 25b de Bruin B, Brands JA, Donners JJ. J. M, Donners MP. J, de Gelder R, Smits JM. M, Gal AW, Spek AL. Chem. Eur. J. 1999; 5: 2921
    • 25c de Bruin B, Budzelaar PH. M, Gal AW. Angew. Chem. Int. Ed. 2004; 43: 4142
  • 26 Dauth A, Love JA. Angew. Chem. Int. Ed. 2010; 49: 9219
  • 27 For recently published formation of a similar Ir complex, see: Ghatak T, Sarkar M, Dinda S, Dutta I, Rahaman SM. W, Bera JK. J. Am. Chem. Soc. 2015; 137: 6168

    • For typical examples, see:
    • 28a Garrald MA, Hernfindez R, Ibarlucea L, Arriortua MI, Urtiaga MK. Inorg. Chim. Acta 1996; 232: 9
    • 28b Heaton BT, Jacob Ch, Sampanthar JT. J. Chem. Soc., Dalton Trans. 1998; 1403
    • 28c de Bruin B, Kicken RJ. N. A. M, Suos NF. A, Donners MP. J, den Reijer CJ, Sandee AJ, de Gelder R, Smits JM. M, Gal AW, Spek AL. Eur. J. Inorg. Chem. 1999; 1581
  • 29 Cubillo FP, Lymer J, Scanlan EM, Scott JS, Walton JC. Tetrahedron 2008; 64: 11908
  • 30 Bowman WR, Lyon JE, Pritchard GJ. Synlett 2008; 2169
  • 31 Liang Z, Ju L, Xie Y, Huang L, Zhang Y. Chem. Eur. J. 2012; 18: 15816
  • 32 Zhang L, Ang GY, Chiba S. Org. Lett. 2010; 12: 3682
  • 33 Pawlas J, Begtrup M. Org. Lett. 2002; 4: 2687