Synthesis 2016; 48(08): 1101-1107
DOI: 10.1055/s-0035-1561198
short review
© Georg Thieme Verlag Stuttgart · New York

Polyfunctional Zinc and Magnesium Organometallics for Organic Synthesis: Some Perspectives

Andreas D. Benischke
Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany   Email: [email protected]
,
Mario Ellwart
Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany   Email: [email protected]
,
Matthias R. Becker
Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany   Email: [email protected]
,
Paul Knochel*
Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 26 November 2015

Accepted after revision: 21 December 2015

Publication Date:
18 January 2016 (online)


Abstract

The most important methods for the preparation of polyfunctional Zn and Mg reagents are highlighted. New perspectives for increasing the synthetic potential of these reagents including the use of Lewis acid catalysis, in situ trapping reactions, continuous flow conditions, and solid, air-stable zinc organometallics are described.

1 Introduction

2 Preparation Methods

3 Air-Stable Solid Organozinc Reagents

4 Lewis Acid Catalyst Compatibility with Polyfunctional Zinc and Magnesium Organometallics

5 Metalations in Flow Mode

6 Conclusion

 
  • References

    • 1a Frankland E. J. Chem. Soc. 1848; 2: 263
    • 1b Grignard V. C. R. Hebd. Seances Acad. Sci. 1900; 130: 1322
    • 1c Grignard V. Ann. Chim. 1901; 24: 433
    • 2a Boudier A, Bromm LO, Lotz M, Knochel P. Angew. Chem. Int. Ed. 2000; 39: 4415
    • 2b Knochel P, Dohle W, Gommermann N, Kneisel FF, Kopp F, Korn T, Sapountzis I, Vu YA. Angew. Chem. Int. Ed. 2003; 42: 4302
    • 3a Knoess PH, Furlong MT, Rozema MJ, Knochel P. J. Org. Chem. 1991; 56: 5974
    • 3b Duddu R, Eckhardt M, Furlong MT, Knoess PH, Berger S, Knochel P. Tetrahedron 1994; 50: 2415
    • 3c Langer F, Schwink L, Devasagayaraj A, Chavant P.-Y, Knochel P. J. Org. Chem. 1996; 61: 8229
    • 3d Manolikakes G, Munoz Hernandez C, Schade MA, Metzger A, Knochel P. J. Org. Chem. 2008; 73: 8422
    • 3e Manolikakes G, Schade MA, Munoz Hernandez C, Mayr H, Knochel P. Org. Lett. 2008; 10: 2765
    • 3f Dong Z, Manolikakes G, Li J, Knochel P. Synthesis 2009; 681
    • 3g Manolikakes G, Dong Z, Mayr H, Li J, Knochel P. Chem. Eur. J. 2009; 15: 1324
    • 3h Shen Z.-L, Sommer K, Knochel P. Synthesis 2015; 47: 2617
    • 4a Krasovskiy A, Malakhov V, Gavryushin A, Knochel P. Angew. Chem. Int. Ed. 2006; 45: 6040
    • 4b Metzger A, Piller FM, Knochel P. Chem. Commun. 2008; 44: 5824
    • 4c Metzger A, Schade MA, Manolikakes G, Knochel P. Chem. Asian J. 2008; 3: 1678
    • 4d Schade MA, Metzger A, Hug S, Knochel P. Chem. Commun. 2008; 26: 3046
    • 4e Metzger A, Schade MA, Knochel P. Org. Lett. 2008; 10: 1107
    • 4f Piller FM, Metzger A, Schade MA, Haag BA, Gavryushin A, Knochel P. Chem. Eur. J. 2009; 15: 7192
    • 4g Sämann C, Knochel P. Synthesis 2013; 45: 1870
    • 5a Rieke RD. Acc. Chem. Res. 1977; 10: 301
    • 5b Rieke RD. Chem. Rev. 1988; 88: 733
    • 5c Rieke RD. Science 1989; 246: 1260
    • 5d Rieke RD, Hanson MV. Tetrahedron 1997; 53: 1925
  • 6 Haag BA, Saemann C, Jana A, Knochel P. Angew. Chem. Int. Ed. 2011; 50: 7290
    • 7a Chen Y.-H, Knochel P. Angew. Chem. Int. Ed. 2008; 47: 7648
    • 7b Chen Y.-H, Sun M, Knochel P. Angew. Chem. Int. Ed. 2009; 48: 2236
    • 7c Peng Z, Bluemke TD, Mayer P, Knochel P. Angew. Chem. Int. Ed. 2010; 49: 8516
    • 7d Bluemke TD, Chen Y.-H, Peng Z, Knochel P. Nat. Chem. 2010; 2: 313
    • 7e Bluemke TD, Groll K, Karaghiosoff K, Knochel P. Org. Lett. 2011; 13: 6440
    • 7f Groll K, Bluemke TD, Unsinn A, Haas D, Knochel P. Angew. Chem. Int. Ed. 2012; 51: 11157
    • 7g Bluemke TD, Klatt T, Koszinowski K, Knochel P. Angew. Chem. Int. Ed. 2012; 51: 9926
    • 7h Klatt T, Bluemke TD, Ganiek MA, Knochel P. Synthesis 2015; 46: 290
  • 8 Shen Z.-L, Knochel P. ACS Catal. 2015; 5: 2324
    • 9a Takai K, Kakiuchi T, Utimoto K. J. Org. Chem. 1994; 59: 2671
    • 9b Takai K, Ueda T, Hayashi T, Moriwake T. Tetrahedron Lett. 1996; 37: 7049
    • 9c Takai K, Ikawa Y. Org. Lett. 2002; 4: 1727
    • 9d Takai K, Ueda T, Ikeda N, Ishiyama T, Matsushita H. Bull. Chem. Soc. Jpn. 2003; 76: 347
  • 10 Dagousset G, Francois C, León T, Blanc R, Sansiaume-Dagousset E, Knochel P. Synthesis 2014; 46: 3133
    • 11a Knochel P, Dohle W, Gommermann N, Kneisel FF, Kopp F, Korn T, Sapountzis I, Vu VA. Angew. Chem. Int. Ed. 2003; 42: 4302
    • 11b Kneisel FF, Dochnahl M, Knochel P. Angew. Chem. Int. Ed. 2004; 43: 1017
    • 11c Kneisel FF, Leuser H, Knochel P. Synthesis 2005; 2625
    • 11d Ren H, Krasovskiy A, Knochel P. Chem. Commun. 2005; 4: 543
    • 11e Krasovskiy A, Straub BF, Knochel P. Angew. Chem. Int. Ed. 2006; 45: 159
    • 11f Rauhut CB, Cervino C, Krasovskiy A, Knochel P. Synlett 2009; 67
    • 12a Ren H, Krasovskiy A, Knochel P. Org. Lett. 2004; 6: 4215
    • 12b Krasovskiy A, Knochel P. Angew. Chem. Int. Ed. 2004; 43: 3333
    • 12c Despotopoulou C, Bauer RC, Krasovskiy A, Mayer P, Stryker JM, Knochel P. Chem. Eur. J. 2008; 14: 2499
    • 13a Mulvey RE, Mongin F, Uchiyama M, Kondo Y. Angew. Chem. Int. Ed. 2007; 46: 3802
    • 13b Schlosser M, Mongin F. Chem. Soc. Rev. 2007; 36: 1161
    • 13c Chevallier F, Mongin F. Chem. Soc. Rev. 2008; 37: 595
    • 13d Mulvey RE. Acc. Chem. Res. 2009; 42: 743
    • 13e Harrison-Marchand A, Mongin F. Chem. Rev. 2013; 113: 7470
    • 13f Mongin F, Harrison-Marchand A. Chem. Rev. 2013; 113: 7563
    • 13g Tilly D, Chevallier F, Mongin F, Gros PC. Chem. Rev. 2014; 114: 1207
    • 14a Miyaura N, Suzuki A. J. Chem. Soc., Chem. Commun. 1979; 866
    • 14b Miyaura N, Yamada K, Suzuki A. Tetrahedron Lett. 1979; 36: 3437
    • 14c Miyaura N, Yano T, Suzuki A. Tetrahedron Lett. 1980; 21: 2865
    • 15a Haag BA, Mosrin M, Hiriyakkanavar I, Malakhov V, Knochel P. Angew. Chem. Int. Ed. 2011; 50: 9794
    • 15b Klatt T, Markiewicz JT, Saemann C, Knochel P. J. Org. Chem. 2014; 79: 4253
    • 16a Hauser CR, Walker HG. J. Am. Chem. Soc. 1947; 69: 295
    • 16b Hauser CR, Frostick FC. J. Am. Chem. Soc. 1949; 71: 1350
    • 16c Eaton PE, Lee C.-H, Xiong Y. J. Am. Chem. Soc. 1989; 111: 8016
    • 16d Eaton PE, Lukin KA. J. Am. Chem. Soc. 1993; 115: 11370
    • 16e Schlecker W, Huth A, Ottow E, Mulzer J. J. Org. Chem. 1995; 60: 8414
    • 16f Schlecker W, Huth A, Ottow E, Mulzer J. Liebigs Ann. 1995; 1441
    • 16g Zhang M.-X, Eaton PE. Angew. Chem. Int. Ed. 2002; 41: 2169
    • 16h Krasovskiy A, Krasovskaya V, Knochel P. Angew. Chem. Int. Ed. 2006; 45: 2958
    • 16i Lin W, Baron O, Knochel P. Org. Lett. 2006; 8: 5673
    • 16j Boudet N, Lachs JR, Knochel P. Org. Lett. 2007; 9: 5525
    • 16k Clososki GC, Rohbogner CJ, Knochel P. Angew. Chem. Int. Ed. 2007; 46: 7681
    • 16l Wunderlich SH, Knochel P. Angew. Chem. Int. Ed. 2007; 46: 7685
    • 16m Stoll AH, Knochel P. Org. Lett. 2008; 10: 113
    • 16n Boudet N, Dubbaka SR, Knochel P. Org. Lett. 2008; 10: 1715
    • 16o Rohbogner CJ, Clososki GC, Knochel P. Angew. Chem. Int. Ed. 2008; 47: 1503
    • 16p Wunderlich SH, Knochel P. Org. Lett. 2008; 10: 4705
    • 16q Wunderlich SH, Knochel P. Chem. Commun. 2008; 47: 6387
    • 16r Rohbogner CJ, Wagner AJ, Clososki GC, Knochel P. Org. Synth. 2009; 86: 374
    • 16s Dong Z, Clososki GC, Wunderlich SH, Unsinn A, Li J, Knochel P. Chem. Eur. J. 2009; 15: 457
    • 16t Duez S, Steib AK, Knochel P. Org. Lett. 2012; 14: 1951
    • 16u Crestey F, Zimdars S, Knochel P. Synthesis 2013; 45: 3029
    • 16v Barl NM, Malakhov V, Mathes C, Lustenberger P, Knochel P. Synthesis 2015; 47: 692
    • 17a Kondo Y, Shilai M, Uchiyama M, Sakamoto T. J. Am. Chem. Soc. 1999; 121: 3539
    • 17b Uchiyama M, Miyoshi T, Kajihara Y, Sakamoto T, Otani Y, Ohwada T, Kondo Y. J. Am. Chem. Soc. 2002; 124: 8514
    • 17c Whisler MC, MacNeil S, Snieckus V, Beak P. Angew. Chem. Int. Ed. 2004; 43: 2206
    • 17d Awad H, Mongin F, Trécourt F, Quéguiner G, Marsais F. Tetrahedron Lett. 2004; 45: 7873
    • 17e Tamba S, Mitsuda S, Tanaka F, Sugie A, Mori A. Organometallics 2012; 31: 2263
    • 18a Negishi E.-i, Valente LF, Kobayashi M. J. Am. Chem. Soc. 1980; 102: 3298
    • 18b Negishi E.-i. Acc. Chem. Res. 1982; 15: 340
    • 19a Bernhardt S, Manolikakes G, Kunz T, Knochel P. Angew. Chem. Int. Ed. 2011; 50: 9205
    • 19b Stathakis CI, Bernhardt S, Quint V, Knochel P. Angew. Chem. Int. Ed. 2012; 51: 9428
    • 19c Stathakis CI, Manolikakes SM, Knochel P. Org. Lett. 2013; 15: 1302
    • 19d Colombe JR, Bernhardt S, Stathakis CI, Buchwald SL, Knochel P. Org. Lett. 2013; 15: 5754
    • 19e Manolikakes SM, Ellwart M, Stathakis CI, Knochel P. Chem. Eur. J. 2014; 20: 12289
    • 19f Hernán-Gómez A, Herd E, Hevia E, Kennedy AR, Knochel P, Koszinowski K, Manolikakes SM, Mulvey RE, Schnegelsberg C. Angew. Chem. Int. Ed. 2014; 53: 2706
  • 20 Ellwart M, Knochel P. Angew. Chem. Int. Ed. 2015; 54: 10662
    • 21a Jaric M, Haag BA, Unsinn A, Karaghiosoff K, Knochel P. Angew. Chem. Int. Ed. 2010; 49: 5451
    • 21b Stephan DW, Erker G. Angew. Chem. Int. Ed. 2010; 49: 46
    • 21c Jaric M, Haag BA, Manolikakes SM, Knochel P. Org. Lett. 2011; 13: 2306
    • 21d Manolikakes SM, Jaric M, Karaghiosoff K, Knochel P. Chem. Commun. 2013; 49: 2124
    • 22a Klier L, Bresser T, Nigst TA, Karaghiosoff K, Knochel P. J. Am. Chem. Soc. 2012; 134: 13584
    • 22b Groll K, Manolikakes SM, Mollat du Jourdin X, Jaric M, Bredihhin A, Karaghiosoff K, Carell T, Knochel P. Angew. Chem. Int. Ed. 2013; 52: 6776
    • 23a Chen Q, Mollat du Jourdin X, Knochel P. J. Am. Chem. Soc. 2013; 135: 4958
    • 23b Chen Q, León T, Knochel P. Angew. Chem. Int. Ed. 2014; 53: 8746
    • 24a León T, Quinio P, Chen Q, Knochel P. Synthesis 2014; 46: 1374
    • 24b Quinio P, Sustac Roman D, León T, William S, Karaghiosoff K, Knochel P. Org. Lett. 2015; 17: 4396
    • 25a Seggio A, Lannou M.-I, Chevallier F, Nobuto D, Uchiyama M, Golhen S, Roisnel T, Mongin F. Chem. Eur. J. 2007; 13: 9982
    • 25b Seggio A, Chevallier F, Vaultier M, Mongin F. J. Org. Chem. 2007; 72: 6602
    • 25c L’Helgoual’ch J.-M, Seggio A, Chevallier F, Yonehara M, Jeanneau E, Uchiyama M, Mongin F. J. Org. Chem. 2008; 73: 177
    • 25d Snégaroff K, Komagawa S, Chevallier F, Gros PC, Golhen S, Roisnel T, Uchiyama M, Mongin F. Chem. Eur. J. 2010; 16: 8191
    • 25e Chevallier F, Halauko YS, Pecceu C, Nassar IF, Dam TU, Roisnel T, Matulis VE, Ivashkevich OA, Mongin F. Org. Biomol. Chem. 2011; 9: 4671
    • 25f García-Álvarez P, Parkinson JA, Mulvey RE. Angew. Chem. Int. Ed. 2011; 50: 9668
    • 26a Frischmuth A, Knochel P. Angew. Chem. Int. Ed. 2013; 52: 10084
    • 26b Frischmuth A, Fernández M, Barl NM, Achrainer F, Zipse H, Berionni G, Mayr H, Karaghiosoff K, Knochel P. Angew. Chem. Int. Ed. 2014; 53: 7928
  • 27 Yoshida J.-i. Flash Chemistry: Fast Organic Synthesis in Microsystems. Wiley; Chichester: 2008
    • 28a Comer E, Organ MG. J. Am. Chem. Soc. 2005; 127: 8160
    • 28b Comer E, Organ MG. Chem. Eur. J. 2005; 11: 7223
    • 28c Shore G, Morin S, Organ MG. Angew. Chem. Int. Ed. 2006; 45: 2761
    • 28d Shore G, Morin S, Mallik D, Organ MG. Chem. Eur. J. 2008; 14: 1351
    • 28e Browne DL, Baumann M, Harji BH, Baxendale IR, Ley SV. Org. Lett. 2011; 13: 3312
    • 28f Nagaki A, Yamada S, Doi M, Tomida Y, Takabayashi N, Yoshida J.-i. Green Chem. 2011; 13: 1110
    • 28g Tomida Y, Nagaki A, Yoshida J.-i. J. Am. Chem. Soc. 2011; 133: 3744
    • 28h Noёl T, Buchwald SL. Chem. Soc. Rev. 2011; 40: 5010
    • 28i Kim H, Nagaki A, Yoshida J.-i. Nat. Commun. 2011; 2: 264
    • 28j Nagaki A, Matsuo C, Kim S, Saito K, Miyazaki A, Yoshida J.-i. Angew. Chem. Int. Ed. 2012; 51: 3245
    • 28k Nagaki A, Moriwake Y, Yoshida J.-i. Chem. Commun. 2012; 48: 11211
    • 28l Brodmann T, Koos P, Metzger A, Knochel P, Ley SV. Org. Process Res. Dev. 2012; 16: 1102
    • 28m Murray PR. D, Browne DL, Pastre JC, Butters C, Guthrie D, Ley SV. Org. Process Res. Dev. 2013; 17: 1192
    • 28n Chen M, Buchwald SL. Angew. Chem. Int. Ed. 2013; 52: 4247
    • 28o Newby JA, Huck L, Blaylock DW, Witt PM, Ley SV, Browne DL. Chem. Eur. J. 2014; 20: 263
    • 28p Gilmore K, Kopetzki D, Lee JW, Horváth Z, McQuade DT, Seidel-Morgenstern A, Seeberger PH. Chem. Commun. 2014; 50: 12652
    • 28q Ushakov DB, Gilmore K, Kopetzki D, McQuade DT, Seeberger PH. Angew. Chem. Int. Ed. 2014; 53: 557
    • 28r He Z, Jamison TF. Angew. Chem. Int. Ed. 2014; 53: 3353
    • 28s Ley SV, Fitzpatrick DE, Ingham RJ, Myers RM. Angew. Chem. Int. Ed. 2015; 54: 3449
    • 28t Chen M, Ichikawa S, Buchwald SL. Angew. Chem. Int. Ed. 2015; 54: 263
    • 28u Ghislieri D, Gilmore K, Seeberger PH. Angew. Chem. Int. Ed. 2015; 54: 678
    • 29a Petersen TP, Becker MR, Knochel P. Angew. Chem. Int. Ed. 2014; 53: 7933
    • 29b Becker MR, Ganiek MA, Knochel P. Chem. Sci. 2015; 6: 6649
    • 29c Becker MR, Knochel P. Angew. Chem. Int. Ed. 2015; 54: 12501
  • 30 Reactions were typically carried out in coiled reactors and tubes (1.0 mm id; 0.2–20 mL volume) made from PFA, PTFE Teflon or stainless steel.
  • 31 Reactions were typically conducted on a 1.5 mmol scale. These flow reactions can be readily scaled up to a 10 mmol scale.