Synthesis 2016; 48(02): 161-183
DOI: 10.1055/s-0035-1560515
review
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Ynones and Recent Application in Transition-Metal-Catalyzed Reactions

Rachel E. Whittaker
a   Department of Chemistry, The University of Texas at Austin, 101 E 24th St, A5300, Austin, TX 78712, USA   Email: gbdong@cm.utexas.edu
,
Alpay Dermenci
b   Pfizer Inc., Eastern Point Road, Groton, CT 06340, USA
,
Guangbin Dong*
a   Department of Chemistry, The University of Texas at Austin, 101 E 24th St, A5300, Austin, TX 78712, USA   Email: gbdong@cm.utexas.edu
› Author Affiliations
Further Information

Publication History

Received: 25 August 2015

Accepted after revision: 17 September 2015

Publication Date:
04 November 2015 (online)


Abstract

α,β-Acetylenic ketones (ynones) are found in important bioactive molecules and materials. They are also useful precursors to valuable heterocycles. In this review, methods of ynone preparation are described. Additionally, transition-metal-catalyzed methodologies utilizing ynones are introduced. Lastly, examples of these methodologies in the total synthesis of complex molecules are highlighted. Although they have been known for over 100 years, research over the past three decades has greatly expanded the understanding of ynone reactivity. This unique reactivity makes the α,β-acetylenic ketone a useful moiety with untapped potential.

1 Introduction

2 Historical Perspective

3 Ynone Preparation

3.1 Distinct Metal Acetylides

3.2 Carbonylative Cross-Couplings

3.3 Oxidative Methods

4 Transition-Metal-Catalyzed Reactions of Ynones

4.1 Cyclizations

4.2 Miscellaneous Reactions

4.3 Ynones in Total Synthesis

5 Summary and Outlook

 
  • References

    • 1a Imai K. J. Pharm. Soc. Jpn. 1956; 76: 405
    • 1b Fawcett CH, Firu RD, Spencer DM. Physiol. Plant. Pathol. 1971; 1: 163
    • 1c Chowdhury C, Kundu NG. Tetrahedron 1999; 55: 7011
    • 1d Quesnelle CA, Gill P, Dodier M, St Laurent D, Serrano-Wu M, Marinier A, Martel A, Mazzucco CE, Stickle TM, Barret JF, Vyas DM, Balasubramanian BN. Bioorg. Med. Chem. Lett. 2003; 13: 519
    • 1e Kuklev DV, Domb AJ, Dembitsky VM. Phytomedicine 2013; 20: 1145

      For recent examples, see:
    • 2a Marco-Contelles J, de Opazo E. J. Org. Chem. 2002; 67: 3705
    • 2b Karpov AS, Merkul E, Rominger F, Müller TJ. J. Angew. Chem. Int. Ed. 2005; 44: 6951
    • 2c Forsyth CJ, Xu J, Nguyen ST, Samdai IA, Briggs LR, Rundberget T, Sandvik M, Miles CO. J. Am. Chem. Soc. 2006; 128: 15114
    • 2d Tietze LF, Singidi RR, Gericke KM, Bockemeier H, Laatsch H. Eur. J. Org. Chem. 2007; 5875
    • 2e D’Souza DM, Müller TJ. J. Nat. Protoc. 2008; 3: 1660

      For recent examples, see:
    • 3a Willy B, Müller TJ. J. ARKIVOC 2008; (i): 195
    • 3b Jeevanandam A, Narkunan K, Ling Y.-C. J. Org. Chem. 2001; 66: 6014
    • 3c Lee CG, Lee KY, Lee S, Kim J. Tetrahedron 2005; 61: 8705
    • 3d Van den Hoven BG, Ali BE, Alper H. J. Org. Chem. 2000; 65: 4131
    • 3e Kirkham JD, Edeson SJ, Stokes S, Harrity JP. A. Org. Lett. 2012; 14: 5354
    • 3f Hojo M, Tomita K, Hosomi A. Tetrahedron Lett. 1993; 34: 485
    • 3g Karpov AS, Müller TJ. J. Org. Lett. 2003; 5: 3451
    • 3h Awuah E, Capretta A. Org. Lett. 2009; 11: 3210
    • 3i Arcadu A, Marinelli F, Rossi E. Tetrahedron 1999; 55: 13233

      For reviews on ynone synthesis, see:
    • 4a Chinchilla R, Nájera C. Chem. Rev. 2014; 114: 1783
    • 4b Cozzi PG, Hilgraf R, Zimmermann N. Eur. J. Org. Chem. 2004; 4095
    • 4c Sonogashira K. Handbook of Organopalladium Chemistry for Organic Synthesis . Wiley Interscience; New York: 2002: 493
    • 4d Müller TJ. J. Synthesis of Heterocycles via Multicomponent Reactions II: Topics in Heterocyclic Chemistry. Vol. 25. Springer; Berlin: 2010: 25
    • 4e Nelson A In Science of Synthesis . Vol. 26. Thieme; Stuttgart: 2005: 971

      For reviews on ynone applications, see:
    • 5a Sengee M, Sydnes LK. Pure Appl. Chem. 2011; 83: 587
    • 5b Fraile A, Parra A, Tortosa M, Alemán J. Tetrahedron 2014; 70: 9145
    • 5c Abbiati G, Arcadi A, Marinelli F, Rossi E. Synthesis 2014; 46: 687
    • 5d Arai T, Ikematsu Y, Suemitsu Y. Pure Appl. Chem. 2010; 82: 1485
  • 6 This review is not meant to be comprehensive, but rather to provide an overview. Literature reported through March 2015 is covered in this article.
  • 7 Nef JV. Justus Liebigs Ann. Chem. 1899; 308: 264
  • 8 Stockhausen F, Gattermann L. Ber. Dtsch. Chem. Ges. 1892; 25: 3535
  • 9 Watson ER. J. Chem. Soc. Trans. 1904; 85: 1319
  • 10 Kroeger JW, Nieuwland JA. J. Am. Chem. Soc. 1936; 58: 1861
  • 11 Runge F. Organomagnesiumverbindungen. Wissenschaftliche Verlagsgesellschaft m. b. H; Stuttgart: 1932: 180

    • For representative examples, see:
    • 12a Jones ER. H, Skattebol L, Whiting MC. J. Chem. Soc. 1956; 4765
    • 12b Livingston R, Cox LR, Odermatt S, Diederich F. Helv. Chim. Acta 2002; 85: 3052
    • 12c De Pinto JT, de Prophetis WA, Menke JL, McMahon RJ. J. Am. Chem. Soc. 2007; 129: 2308
    • 12d Jeong Y, Kim B.-I, Lee JK, Ryu J.-S. J. Org. Chem. 2014; 79: 6444
  • 13 Schmidt V, Schwochau M. Chem. Ber. 1964; 97: 1649
  • 14 Fukumaru T, Awata H, Hamma N, Komatsu T. Agric. Biol. Chem. 1975; 39: 519
    • 15a Logue MW, Moore GL. J. Org. Chem. 1975; 40: 131
    • 15b Sun W, Wang Y, Wu X, Yao X. Green Chem. 2013; 15: 2356
  • 16 Zanina AS, Shergina SI, Sokolov IE, Kotlyarevskii IL. Izv. Akad. Nauk USSR, Ser. Khim. 1981; 1158
  • 17 For an example of Zanina's method in the synthesis of ynones, see: Ramachandran PV, Teodorovic AV, Rangaishenvi MV, Brown HC. J. Org. Chem. 1992; 57: 2379
  • 18 Vereshchagin LI, Yashina OG, Zarva TV. Zh. Org. Khim. 1996; 2: 1895
  • 19 Keivanloo A, Bajherad M, Bahramian B, Baratnia S. Tetrahedron Lett. 2011; 52: 1498
  • 20 Perez I, Sestelo JP, Sarandeses LA. J. Am. Chem. Soc. 2001; 123: 4155
    • 21a Wakamatsu K, Okuda Y, Oshima K, Nozaki H. Bull. Chem. Soc. Jpn. 1985; 58: 2425
    • 21b Wang B, Bonin M, Micouin L. J. Org. Chem. 2005; 70: 6126
    • 22a Walton DR. M, Waugh F. J. Organomet. Chem. 1972; 37: 45
    • 22b Ito H, Sensui H.-O, Arimoto K, Miura K, Hosomi A. Chem. Lett. 1997; 639
    • 22c Nishihara Y, Takemura M, Mori A, Osakada K. J. Organomet. Chem. 2001; 620: 282
    • 22d Gallagher WP, Maleczka Jr RE. J. Org. Chem. 2003; 68: 6775
    • 23a Davis RB, Scheiber DH. J. Am. Chem. Soc. 1956; 78: 1675
    • 23b Naka T, Koide K. Tetrahedron Lett. 2003; 44: 443
    • 24a Taylor C, Bolshan Y. Org. Lett. 2014; 16: 488
    • 24b Nishihara Y, Saito D, Inoue E, Okada Y, Miyazaki M, Inoue Y. Tetrahedron Lett. 2010; 51: 306
  • 25 Tohda Y, Sonogashira K, Hagihara N. Synthesis 1977; 777
  • 26 Boersch C, Merkul E, Müller TJ. J. Angew. Chem. Int. Ed. 2011; 50: 10448
    • 27a Logue MW, Teng K. J. Org. Chem. 1982; 47: 2549
    • 27b Luu T, Morisaki Y, Cunningham N, Tykwinski RR. J. Org. Chem. 2007; 72: 9622
  • 28 Yashina OG, Zarva TV, Kaigorodova TD, Vereshchgin LI. Zh. Org. Khim. 1968; 4: 2104
  • 29 Markó IE, Southern JM. J. Org. Chem. 1990; 55: 3368
  • 30 Han Y, Fang L, Tao W.-T, Huang Y.-Z. Tetrahedron Lett. 1995; 36: 1287
  • 31 Kakusawa N, Yamaguchi K, Kurita J, Tsuchiya T. Tetrahedron Lett. 2000; 41: 4143
  • 32 Hirao T, Misu D, Agawa T. Tetrahedron Lett. 1986; 27: 933
    • 33a Nahm S, Weinreb SM. Tetrahedron Lett. 1981; 22: 3815
    • 33b Freil DK, Snapper ML, Hoveyda AH. J. Am. Chem. Soc. 2008; 130: 9942
    • 33c Niphakis MJ, Turunen BJ, Georg GI. J. Org. Chem. 2010; 75: 6793
    • 33d Haubenreisser S, Hensenne P, Schroeder S, Niggemann M. Org. Lett. 2013; 15: 2262
    • 34a Chem. Eng. News 1999; 77 (33) 23
    • 34b Brown JD. Tetrahedron: Asymmetry 1992; 3: 1551
    • 34c Sengupta S, Mondal S, Das D. Tetrahedron Lett. 1999; 40: 4107
    • 34d Tasaka A, Tamura N, Matsushita Y, Kitazaki T, Hayashi R, Okonogi K, Itoh K. Chem. Pharm. Bull. 1995; 43: 432
    • 34e Monteith MJ, Bailey KD, Crosby J. PCT Int. Appl. WO 9954272, 1999
    • 34f Gomtsyan A. Org. Lett. 1999; 2: 11
    • 34g Martin R, Romea P, Tey C, Urpi F, Vilarrasa J. Synlett 1997; 1414
    • 34h Jackson MM, Leverett C, Toczko JF, Roberts JC. J. Org. Chem. 2002; 67: 5032
    • 35a Morales-Serna JA, Sauza A, Padron de Jesus G, Gavino R, Garcia de la Mora G, Cárdenas J. Tetrahedron Lett. 2013; 54: 7111
    • 35b Morales-Serna JA, Sànchez E, Velàzquez R, Bernal J, Garcìa-Rìos E, Gaviño R, Negrón-Silva G, Cárdenas J. Org. Biomol. Chem. 2010; 8: 4940
    • 35c Morales-Serna JA, Vera A, Paleo E, Garcìa-Rìos E, Gaviño R, Garcìa de la Mora G, Cárdenas J. Synthesis 2010; 4261
    • 35d Morales-Serna JA, Garcìa-Rìos E, Bernal J, Paleo E, Gaviño R, Cárdenas J. Synthesis 2011; 1375
  • 36 Kobayashi T, Tanaka M. J. Chem. Soc., Chem. Commun. 1981; 333
  • 37 Mohamed Ahmed MS, Mori A. Org. Lett. 2003; 5: 3057
    • 38a Liu J, Peng X, Sun W, Zhao Y, Xia C. Org. Lett. 2008; 10: 3933
    • 38b Astruc D, Lu F, Aranzaes JR. Angew. Chem. Int. Ed. 2005; 44: 7852
    • 38c Köhler K, Kleist W, Pröckl S. Inorg. Chem. 2007; 46: 1876
    • 38d Baruwati B, Guin D, Manorama SV. Org. Lett. 2007; 9: 5377
    • 38e Zhu Y, Peng SC, Emi A, Su Z, Monalisa, Kemp RA. Adv. Synth. Catal. 2007; 349: 1917
    • 38f Kotani M, Koike T, Yamaguchi K, Mizuno N. Green Chem. 2006; 8: 735
    • 39a Fusano A, Fukuyama T, Nishitani S, Inouye T, Ryu I. Org. Lett. 2010; 12: 2410
    • 39b Kondo T, Sone Y, Tsuji Y, Watanabe Y. J. Organomet. Chem. 1994; 473: 163
    • 39c Ishiyama T, Murata M, Suzuki A, Miyaura N. J. Chem. Soc., Chem. Commun. 1995; 295
    • 39d Ryu I. Chem. Rec. 2002; 2: 249
    • 39e Fukuyama T, Yamaura R, Ryu I. Can. J. Chem. 2005; 83: 711
  • 40 Wu X.-F, Neumann H, Beller M. Chem. Eur. J. 2010; 16: 12104
  • 41 Wu X.-F, Sundararaju B, Neumann H, Dixneuf PH, Beller M. Chem. Eur. J. 2011; 17: 106
  • 42 Shaw JE, Sherry JJ. Tetrahedron Lett. 1971; 46: 4379
    • 43a Marshall CW, Ray RE, Laos I, Riegel B. J. Am. Chem. Soc. 1957; 79: 6308
    • 43b Atwater NW. J. Am. Chem. Soc. 1961; 83: 3071
    • 43c Dauben WG, Ashcraft AC. J. Am. Chem. Soc. 1963; 85: 3673
    • 43d Dauben WG, Lorber M, Fullerton DS. J. Org. Chem. 1969; 34: 3587
  • 44 Chabaud B, Sharpless KB. J. Org. Chem. 1979; 44: 4202
  • 45 Muzart J, Piva O. Tetrahedron Lett. 1988; 29: 2321
  • 46 Sakaguchi S, Takase T, Iwahama T, Ishii Y. Chem. Commun. 1998; 2037
    • 47a Li P, Fung HC, Chao LC. F, Lin YH, Williams ID. J. Mol. Catal. A: Chem. 1999; 145: 111
    • 47b Li P, Fong WM, Chao LC. F, Fung SH. C, Williams ID. J. Org. Chem. 2001; 66: 4087
  • 48 McLaughlin EC, Doyle MP. J. Org. Chem. 2008; 73: 4317
  • 49 Wang Z, Li L, Huang Y. J. Am. Chem. Soc. 2014; 136: 12233
  • 50 Wang Z, Li X, Huang Y. Angew. Chem. Int. Ed. 2013; 52: 14219
  • 51 For a review of EBX use and development, see: Brand JP, Fernandez Gonzalez D, Nicolai S, Waser J. Chem. Commun. 2011; 47: 102
  • 52 Yu Y, Yang W, Pflästerer D, Hashmi AS. K. Angew. Chem. Int. Ed. 2014; 53: 1144
    • 53a Sheng H, Lin S, Huang YZ. Tetrahedron Lett. 1986; 27: 4893
    • 53b Trost BM, Schmidt T. J. Am. Chem. Soc. 1988; 110: 2301
    • 53c Matsuo K, Sakaguchi Y. Heterocycles 1996; 43: 2553
  • 54 Jeevanandam A, Narkunan K, Cartwright C, Ling Y.-C. Tetrahedron Lett. 1999; 40: 4841
    • 55a Kel’in A, Gevorgyan V. J. Org. Chem. 2002; 67: 95
    • 55b Kel’in A, Sromek AW, Gevorgyan V. J. Am. Chem. Soc. 2001; 123: 2074
    • 56a Huang Q, Hua R. Chem. Eur. J. 2007; 13: 8333
    • 56b The Dong group also found [Rh] could catalyze this transformation, see reference 75b for details.
  • 57 Wang H, Denton JR, Davies HM. L. Org. Lett. 2011; 13: 4316
  • 58 Denton JR, Davies HM. L. Org. Lett. 2009; 11: 787

    • For examples of cycloisomerization of alkynyl cyclopropanes, see:
    • 59a Zhang J, Schmalz HG. Angew. Chem. Int. Ed. 2006; 45: 6704
    • 59b Zhang G, Huang X, Li G, Zhang L. J. Am. Chem. Soc. 2008; 130: 1814
    • 59c Zhang X, Tu Y, Jiang Y, Zhang Y, Fan C, Zhang F. Chem. Commun. 2009; 4726
    • 59d Gorin DJ, Watson ID. G, Toste FD. J. Am. Chem. Soc. 2008; 130: 3736
    • 59e Kleinbeck F, Toste FD. J. Am. Chem. Soc. 2009; 131: 9178
    • 59f Barluenga J, Tudela E, Vicente R, Ballesteros A, Tomás M. Angew. Chem. Int. Ed. 2011; 50: 2107
  • 60 Ge G.-C, Mo D.-L, Ding C.-H, Dai L.-X, Hou X.-L. Org. Lett. 2012; 14: 5756
  • 62 Ueda M, Ikeda Y, Sato A, Ito Y, Kakiuchi M, Shono H, Miyoshi T, Naito T, Miyata O. Tetrahedron 2011; 67: 4612
  • 63 Ueda M, Sato A, Ikeda Y, Miyoshi T, Naito T, Miyata O. Org. Lett. 2010; 12: 2594
  • 64 Dieter RK, Lu K. J. Org. Chem. 2002; 67: 847
  • 65 Wang L, Li G, Liu Y. Org. Lett. 2011; 13: 3786
  • 66 Shi S.-L, Kanai M, Shibasaki M. Angew. Chem. Int. Ed. 2012; 51: 3932
    • 68a Friscourt F, Boons G.-J. Org. Lett. 2010; 12: 4936
    • 68b Sonogashira coupling of TMS alkynes with acyl chlorides had previously been developed by Müller and co-workers, see ref. 3g.
    • 68c Hwang S, Bae H, Kim S, Kim S. Tetrahedron 2012; 68: 1460
    • 69a Hashiguchi S, Fujii A, Takehara J, Ikariya T, Noyori R. J. Am. Chem. Soc. 1995; 117: 7562
    • 69b Hashiguchi S, Uematsu N, Ikariya T, Noyori R. J. Am. Chem. Soc. 1996; 118: 2521
    • 69c Haack K.-J, Hashiguchi S, Fujii A, Ikariya T, Noyori R. Angew. Chem. Int. Ed. 1997; 36: 285
    • 69d Hashiguchi S, Fujii A, Haack K.-J, Matsumura K, Ikariya T, Noyori R. Angew. Chem. Int. Ed. 1997; 36: 288
    • 69e Matsumura K, Hashiguchi S, Ikariya T, Noyori R. J. Am. Chem. Soc. 1997; 119: 8738
    • 70a Midland MM, Kazubski A. J. Org. Chem. 1982; 47: 2814
    • 70b Brown HC, Ramachandran PV, Weissman SA, Swaminathan S. J. Org. Chem. 1990; 55: 6328
  • 71 Helal CJ, Magriotis PA, Corey EJ. J. Am. Chem. Soc. 1996; 118: 10938
  • 73 Shiroodi RK, Soltani M, Gevorgyan V. J. Am. Chem. Soc. 2014; 136: 9882
    • 74a Müller E. Tetrahedron Lett. 1969; 1129
    • 74b Müller E. Justus Liebigs Ann. Chem. 1973; 9: 1583
    • 75a Dermenci A, Whittaker RE, Dong G. Org. Lett. 2013; 15: 2242
    • 75b Dermenci A, Whittaker RE, Gao Y, Cruz FA, Yu Z.-X, Dong G. Chem. Sci. 2015; 6: 3201
    • 76a Nicolaou KC, Sarlah D, Shaw DM. Angew. Chem. Int. Ed. 2007; 46: 4708
    • 76b For a reference for the synthesis of hyperolactone C from l-malic acid, see: Ueki T, Doe M, Tanaka R, Morimoto Y, Yoshihara K, Kinoshita T. J. Heterocycl. Chem. 2001; 38: 165
  • 77 Xing Y, O’Doherty GA. Org. Lett. 2009; 11: 1107
  • 78 Shin Y, Fournier J.-H, Fuzuki Y, Brücker AM, Curran DP. Angew. Chem. Int. Ed. 2004; 43: 4634