Synthesis 2015; 47(20): 3079-3117
DOI: 10.1055/s-0035-1560465
review
© Georg Thieme Verlag Stuttgart · New York

Palladium(II)-Catalysed Oxidation of Alkenes

Sam E. Mann
a   Argenta, Discovery Services, Charles River, 7-9 Spire Green Centre, Flex Meadow, Harlow, Essex, CM19 5TR, UK
,
L. Benhamou
b   Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon St, London, WC1H 0AJ, UK   Email: tom.sheppard@ucl.ac.uk
,
Tom D. Sheppard*
b   Department of Chemistry, University College London, Christopher Ingold Laboratories, 20 Gordon St, London, WC1H 0AJ, UK   Email: tom.sheppard@ucl.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 01 May 2015

Accepted after revison: 25 June 2015

Publication Date:
26 August 2015 (online)


Abstract

This review provides a summary of recent developments in the palladium(II)-catalysed oxidation of alkenes, focusing largely on reactions which lead to the formation of new carbon–oxygen or carbon–nitrogen bonds. Three classes of reaction are covered: i) oxidations proceeding via allylic C–H bond cleavage and formation of a π-allyl complex; ii) Wacker-type oxidations proceeding via nucleopalladation followed by β-hydride elimination; and iii) 1,2-difunctionalisation of alkenes proceeding via nucleopalladation followed by functionalisation of the resulting σ-alkylpalladium(II) intermediate. The mechanisms are discussed alongside the scope and limitations of each reaction.

1 Introduction

1.1 Background

1.2 Oxidation Pathways

1.3 Observation of Reaction Intermediates

2 Allylic Oxidation

2.1 Background

2.2 Allylic Oxygenation

2.3 Allylic Amination

2.4 Allylic Functionalisation with Other Nucleophiles

3 The Wacker Oxidation

3.1 Background

3.2 Variation of the Co-Oxidant

3.3 Direct Oxygen-Coupled Wacker Oxidations

3.4 Aldehyde-Selective Wacker Oxidations

3.5 Wacker Oxidation of Internal Alkenes

3.6 Aza-Wacker Oxidations

4 Intermolecular 1,2-Difunctionalisation of Alkenes

4.1 Introduction

4.2 Oxyhalogenation Reactions

4.3 Dioxygenation Reactions

4.4 Oxycarbonylation Reactions

4.5 Aminohalogenation Reactions

4.6 Diamination Reactions

4.7 Aminooxygenation Reactions

4.8 Aminocarbonylation Reactions

5 Summary and Conclusions

 
  • References

  • 1 Smidt J, Hafner W, Jira R, Sieber R, Sedlmeier J, Sabel A. Angew. Chem. 1962; 74: 93
  • 2 For a very recent review, see: Kočovský P, Bäckvall J.-E. Chem. Eur. J. 2015; 21: 36
  • 3 Keith JA, Henry PM. Angew. Chem. Int. Ed. 2009; 48: 9038
  • 4 For examples, see: Trost BM, Metzner PJ. J. Am. Chem. Soc. 1980; 102: 3572
  • 5 Mann SE, Aliev AE, Tizzard GJ, Sheppard TD. Organometallics 2011; 30: 1772

    • For reviews of the Tsuji–Trost reaction, see:
    • 6a Trost BM. J. Org. Chem. 2004; 69: 5813
    • 6b Trost BM, Crawley ML. Chem. Rev. 2003; 103: 2921
    • 6c Tsuji J. Tetrahedron 1986; 42: 4361
    • 6d Trost BM. Acc. Chem. Res. 1980; 13: 385

      For reviews of the Sharpless asymmetric epoxidation, see:
    • 7a Johnson RA, Sharpless KB In Catalytic Asymmetric Synthesis . 2nd ed.; Ojima I. Wiley-VCH; Weinheim: 2000: 231-280
    • 7b Katsuki T In Comprehensive Asymmetric Catalysis . 1st ed., Vol. 2; Jacobsen EN, Pfaltz A, Yamamoto H. Springer; New York: 1999: 621-648
    • 7c Jacobsen EN In Comprehensive Organometallic Chemistry II . 1st ed., Vol. 12; Abel EW, Stone FG. A, Wilkinson G. Pergamon Press; New York: 1995: 1097-1135
    • 7d Johnson RA, Sharpless KB In Comprehensive Organic Synthesis . 1st ed., Vol. 7; Trost BM, Fleming I. Pergamon Press; New York: 1991: 389-436
    • 8a Nakamura A, Nakada M. Synthesis 2013; 45: 1421
    • 8b Andrus MB, Lashley JC. Tetrahedron 2002; 58: 845
    • 8c Eames J, Watkinson M. Angew. Chem. Int. Ed. 2001; 40: 3567
    • 8d Bulman PC, McCarthy TJ In Comprehensive Organic Synthesis . Vol. 7. Trost BM, Fleming I, Paquette LA. Pergamon Press; Oxford: 1991: 83-117
    • 8e Rabjohn N. Org. React. 1976; 24: 261
    • 8f Kharasch MS, Sosnovsky G, Yang NC. J. Am. Chem. Soc. 1959; 81: 5819
    • 8g Kharasch MS, Sosnovsky G. J. Am. Chem. Soc. 1958; 80: 756
    • 9a Moiseev II, Belov AP, Syrkin JK. Izv. Akad. Nauk SSSR, Ser. Khim. 1963; 1527 ; Bull. Acad. Sci. USSR, Div. Chem. Sci. 1963, 12, 1395
    • 9b Vargaftik MN, Moiseev II, Syrkin JK, Yakshin VV. Izv. Akad. Nauk SSSR, Ser. Khim. 1962; 930 ; Bull. Acad. Sci. USSR, Div. Chem. Sci. 1962, 11, 868
    • 9c Moiseev II, Vargaftik MN, Syrkin JK. Dokl. Akad. Nauk SSSR 1960; 133: 377
    • 9d Moiseev II, Vargaftik MN, Syrkin JK. Dokl. Akad. Nauk SSSR 1960; 130: 820
    • 10a Kitching W, Rappoport Z, Winstein S, Young WG. J. Am. Chem. Soc. 1966; 88: 2054
    • 10b Anderson CB, Winstein S. J. Org. Chem. 1963; 28: 605
  • 11 Heumann A, Åkermark B. Angew. Chem. Int. Ed. 1984; 23: 453
    • 12a Zanoni G, Porta A, Meriggi A, Franzini M, Vidari G. J. Org. Chem. 2002; 67: 6064
    • 12b Grennberg H, Bäckvall JE. Chem. Eur. J. 1998; 4: 1083
    • 12c Grennberg H, Simon V, Bäckvall JE. J. Chem. Soc., Chem. Commun. 1994; 265
    • 12d Åkermark B, Larsson EM, Oslob JD. J. Org. Chem. 1994; 59: 5729
    • 12e Larock RC, Hightower TR. J. Org. Chem. 1993; 58: 5298
    • 12f Hansson S, Heumann A, Rein T, Åkermark B. J. Org. Chem. 1990; 55: 975
    • 12g Byström SE, Larsson EM, Åkermark B. J. Org. Chem. 1990; 55: 5674
    • 12h Åkermark B, Hansson S, Rein T, Vågberg J, Heumann A, Bäckvall JE. J. Organomet. Chem. 1989; 369: 433
    • 12i McMurry JE, Kočovský P. Tetrahedron Lett. 1984; 25: 4187
  • 13 Bäckvall JE, Byström SE, Nordberg RE. J. Org. Chem. 1984; 49: 4619
  • 14 Chen MS, White MC. J. Am. Chem. Soc. 2004; 126: 1346
  • 15 Chen MS, Prabagaran N, Labenz NA, White MC. J. Am. Chem. Soc. 2005; 127: 6970
    • 16a Ammann SE, Rice GT, White MC. J. Am. Chem. Soc. 2014; 136: 10834
    • 16b Osberger TJ, White MC. J. Am. Chem. Soc. 2014; 136: 11176
    • 16c Gormisky PE, White MC. J. Am. Chem. Soc. 2011; 133: 12584
    • 16d Stang EM, White MC. Angew. Chem. Int. Ed. 2011; 50: 2094
    • 16e Vermeulen NA, Delcamp JH, White MC. J. Am. Chem. Soc. 2010; 132: 11323
    • 16f Stang EM, White MC. Nature Chem. 2009; 1: 547
    • 16g Covell DJ, White MC. Angew. Chem. Int. Ed. 2008; 47: 6448
    • 16h Delcamp JH, White MC. J. Am. Chem. Soc. 2006; 128: 15076
    • 16i Covell DJ, Vermeulen NA, Labenz NA, White MC. Angew. Chem. Int. Ed. 2006; 45: 8217
    • 16j Fraunhoffer KJ, Prabagaran N, Sirois LE, White MC. J. Am. Chem. Soc. 2006; 128: 9032
    • 16k Fraunhoffer KJ, Bachovchin DA, White MC. Org. Lett. 2005; 7: 223
    • 17a Guzman-Perez A, Corey EJ. Tetrahedron Lett. 1997; 38: 5941
    • 17b Corey EJ, Guzman-Perez A, Noe MC. J. Am. Chem. Soc. 1995; 117: 10805
  • 18 Messenger BT, Davidson BS. Tetrahedron Lett. 2001; 42: 801
  • 19 Bartlett PA, Ting PC. J. Org. Chem. 1986; 51: 2230
  • 20 Saito T, Fuwa H, Sasaki M. Org. Lett. 2009; 11: 5274
  • 21 Burckhardt U, Baumann M, Togni A. Tetrahedron: Asymmetry 1997; 8: 155
  • 22 Malik M, Witkowski G, Jarosz S. Org. Lett. 2014; 16: 3816
  • 23 Ayyagari N, Belani JD. Synlett 2014; 25: 2350
  • 24 Henderson WH, Check CT, Proust N, Stambuli JP. Org. Lett. 2010; 12: 824
  • 25 Le C, Kunchithapatham K, Henderson WH, Check CT, Stambuli JP. Chem. Eur. J. 2013; 19: 11153
  • 26 Campbell AN, White PB, Guzei IA, Stahl SS. J. Am. Chem. Soc. 2010; 132: 15116
  • 27 Mitsudome T, Umetani T, Nosaka N, Mori K, Mizugaki T, Ebitani K, Kaneda K. Angew. Chem. Int. Ed. 2006; 45: 481
  • 28 Kondo H, Yu F, Yamaguchi J, Liu G, Itami K. Org. Lett. 2014; 16: 4212
  • 29 Sharma A, Hartwig JF. J. Am. Chem. Soc. 2013; 135: 17983
  • 30 For a review, see: Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
    • 31a Ball M, Gaunt MJ, Hook DF, Jessiman AS, Kawahara S, Orsini P, Scolaro A, Talbot AC, Tanner HR, Yamanoi S, Ley SV. Angew. Chem. Int. Ed. 2005; 44: 5433
    • 31b Gaunt MJ, Jessiman AS, Orsini P, Tanner HR, Hook DF, Ley SV. Org. Lett. 2003; 5: 4819
    • 31c Gaunt MJ, Hook DF, Tanner HR, Ley SV. Org. Lett. 2003; 5: 4815
  • 32 Check CT, Henderson WH, Wray BC, Vanden Eynden MJ, Stambuli JP. J. Am. Chem. Soc. 2011; 133: 18503
  • 33 Chen H, Jiang H, Cai C, Dong J, Fu W. Org. Lett. 2011; 13: 992
  • 34 Amino Group Chemistry: From Synthesis to the Life Sciences. Ricci A. Wiley-VCH; Weinheim: 2008

    • For selected reviews, see:
    • 35a Breder A. Synlett 2014; 25: 899
    • 35b McDonald RI, Liu G, Stahl SS. Chem. Rev. 2011; 111: 2981
    • 35c Zalatan DN, DuBois J. Top. Curr. Chem. 2010; 292: 347
    • 35d Davies HM. L, Manning JR. Nature 2008; 451: 417
    • 35e Davies HM. L, Long MS. Angew. Chem. Int. Ed. 2005; 44: 3518
  • 36 Fraunhoffer KJ, White MC. J. Am. Chem. Soc. 2007; 129: 7274
  • 37 Taylor LD, Pluhar M, Rubin LE. J. Polym. Sci. B: Polym. Lett. 1967; 5: 77
  • 38 Trost BM, Sudhakar AR. J. Am. Chem. Soc. 1987; 109: 3792
  • 39 Delcamp JH, Brucks AP, White MC. J. Am. Chem. Soc. 2008; 130: 11270
  • 40 Jiang C, Covell DJ, Stepan AF, Plummer MS, White MC. Org. Lett. 2012; 14: 1386
  • 41 Wu L, Qiu S, Liu G. Org. Lett. 2009; 11: 2707
  • 42 Reed SA, White MC. J. Am. Chem. Soc. 2008; 130: 3316
  • 43 Reed SA, Mazzotti AR, White MC. J. Am. Chem. Soc. 2009; 131: 11701
  • 44 Shimizu Y, Obora Y, Ishii Y. Org. Lett. 2010; 12: 1372
  • 45 Yin G, Wu Y, Liu G. J. Am. Chem. Soc. 2010; 132: 11978
  • 46 Qi X, Rice GT, Lall MS, Plummer MS, White MC. Tetrahedron 2010; 66: 4816
  • 47 Young AJ, White MC. J. Am. Chem. Soc. 2008; 130: 14090
  • 48 Young AJ, White MC. Angew. Chem. Int. Ed. 2011; 50: 6824
  • 49 Trost BM, Donckele EJ, Thaisrivongs DA, Osipov M, Masters JT. J. Am. Chem. Soc. 2015; 137: 2776
  • 50 Jiang H, Yang W, Chen H, Li J, Wu W. Chem. Commun. 2014; 50: 7202
  • 51 Wang G.-W, Zhou A.-X, Li S.-X, Yang S.-D. Org. Lett. 2014; 16: 3118
  • 52 Chen H, Cai C, Liu X, Li X, Jiang H. Chem. Commun. 2011; 47: 12224
  • 53 For a review, see: Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
  • 54 Braun M.-G, Doyle AG. J. Am. Chem. Soc. 2013; 135: 12990
  • 55 Deng H.-P, Eriksson L, Szabó KJ. Chem. Commun. 2014; 50: 9207
    • 56a Kirai N, Iguchi S, Ito T, Takaya J, Iwasawa N. Bull. Chem. Soc. Jpn. 2013; 86: 784
    • 56b Selander N, Willy B, Szabó KJ. Angew. Chem. Int. Ed. 2010; 49: 4051
    • 56c Olsson VJ, Szabó KJ. J. Org. Chem. 2009; 74: 7715
    • 56d Olsson VJ, Szabó KJ. Org. Lett. 2008; 10: 3129
  • 57 Tao Z.-L, Li X.-H, Han Z.-Y, Gong L.-Z. J. Am. Chem. Soc. 2015; 137: 4054
  • 58 Larsson JM, Zhao TS. N, Szabó KJ. Org. Lett. 2011; 13: 1888
  • 59 Kovács G, Stirling A, Lledós A, Ujaque G. Chem. Eur. J. 2012; 18: 5612
  • 60 For a typical procedure, see: Tsuji J, Nagashima H, Nemoto H. Org. Synth. Coll. Vol. VII 1990; 137
  • 61 Muzart J. Tetrahedron 2007; 63: 7505
  • 62 Kobayashi T, Kon Y, Abe H, Ito H. Org. Lett. 2014; 16: 6397
  • 63 Becalli EM, Broggini G, Martinelli M, Sottocornola S. Chem. Rev. 2007; 107: 5318
  • 64 Cornell CN, Sigman MS. J. Am. Chem. Soc. 2005; 127: 2796
  • 65 Michel BW, Camelio AM, Cornell CN, Sigman MS. J. Am. Chem. Soc. 2009; 131: 6076
  • 66 Mimoun H, Charpentier R, Mitschler A, Fischer J, Weiss R. J. Am. Chem. Soc. 1980; 102: 1047
  • 67 Fernandes RA, Chaudhari DA. J. Org. Chem. 2014; 79: 5787
  • 68 Fernandes RA, Bethi V. Tetrahedron 2014; 70: 4760
    • 69a Cornell CN, Sigman MS. Org. Lett. 2006; 8: 4117
    • 69b For a relevant review article in this area, see: Gligorich KM, Sigman MS. Chem. Commun. 2009; 3854
  • 70 Wang Y.-F, Gao Y.-R, Mao S, Zhang Y.-L, Guo D.-D, Yan Z.-L, Guo S.-H, Wang Y.-Q. Org. Lett. 2014; 16: 1610
  • 71 Kang S.-K, Jung K.-Y, Chung J.-U, Namkoong E.-Y, Kim T.-H. J. Org. Chem. 1995; 60: 4678
  • 72 Dong JJ, Browne WR, Feringa BL. Angew. Chem. Int. Ed. 2015; 54: 734
  • 73 Yamamoto M, Nakaoka S, Ura Y, Kataoka Y. Chem. Commun. 2012; 48: 1165
  • 74 Feringa BL. J. Chem. Soc., Chem. Commun. 1986; 909
  • 75 Teo P, Wickens ZK, Dong G, Grubbs RH. Org. Lett. 2012; 14: 3237
  • 76 Dong JJ, Fañanás-Mastral M, Alsters PL, Browne WR, Feringa BL. Angew. Chem. Int. Ed. 2013; 52: 5561
  • 77 Weiner B, Baeza A, Jerphagnon TL, Feringa BL. J. Am. Chem. Soc. 2009; 131: 9473
  • 78 Dong JJ, Harvey EC, Fañanás-Mastral M, Browne WR, Feringa BL. J. Am. Chem. Soc. 2014; 136: 17302
  • 79 Andrews MA, Kelly KP. J. Am. Chem. Soc. 1981; 103: 2894
  • 80 Wickens ZK, Skakuj K, Morandi B, Grubbs RH. J. Am. Chem. Soc. 2014; 136: 890
  • 81 Wickens ZK, Morandi B, Grubbs RH. Angew. Chem. Int. Ed. 2013; 52: 11257
  • 82 Jiang Y.-Y, Zhang Q, Yu H.-Z, Fu Y. ACS Catal. 2015; 5: 1414
  • 83 Mitsudome T, Mizumoto K, Mizugaki T, Jitsukawa K, Kaneda K. Angew. Chem. Int. Ed. 2010; 49: 1238
  • 84 Morandi B, Wickens ZK, Grubbs RH. Angew. Chem. Int. Ed. 2013; 52: 2944
    • 85a Bäckvall J.-E, Awasthi AK, Renko ZD. J. Am. Chem. Soc. 1987; 109: 4750
    • 85b Bäckvall J.-E, Hopkins RB, Grennberg H, Mader MM, Awasthi AK. J. Am. Chem. Soc. 1990; 112: 5160
  • 86 Morandi B, Wickens ZK, Grubbs RH. Angew. Chem. Int. Ed. 2013; 52: 9751
  • 87 Lerch MM, Morandi B, Wickens ZK, Grubbs RH. Angew. Chem. Int. Ed. 2014; 53: 8654
  • 88 DeLuca RJ, Edwards JL, Steffens LD, Michel BW, Qiao X, Zhu C, Cook SP, Sigman MS. J. Org. Chem. 2013; 78: 1682

    • For relevant examples, see:
    • 89a Joosten A, Persson AK. Å, Millet R, Johnson MT, Bäckvall J.-E. Chem. Eur. J. 2012; 18: 15151
    • 89b Lu Z, Stahl SS. Org. Lett. 2012; 14: 1234
    • 89c Redford JE, McDonald RI, Rigsby ML, Wiensch JD, Stahl SS. Org. Lett. 2012; 14: 1242
    • 89d Liu G, Stahl SS. J. Am Chem. Soc. 2007; 129: 6328
  • 90 Ji X, Huang H, Wu W, Li X, Jiang H. J. Org. Chem. 2013; 78: 11155
  • 91 Ji X, Huang H, Wu W, Jiang H. J. Am. Chem. Soc. 2013; 135: 5286
  • 92 Ji X, Huang H, Xiong W, Huang K, Wu W, Jiang H. J. Org. Chem. 2014; 79: 7005
  • 93 Mizuta Y, Yasuda K, Obora Y. J. Org. Chem. 2013; 78: 6332
  • 94 Zhao M.-N, Lian X.-L, Ren Z.-H, Wang Y.-Y, Guan Z.-H. RSC Adv. 2014; 4: 62042
  • 95 Wu G, Wieping S. Org. Lett. 2013; 15: 5278
  • 96 For a review on dihydroxylation, see: Kolb HC, VanNieuwenhze MS, Sharpless KB. Chem. Rev. 1994; 94: 2483

    • For reviews on palladium-catalysed difunctionalisation of alkenes, see:
    • 97a Muñiz K, Martínez C. Oxidative Functionalisation of Alkenes . In Metal-Catalyzed Cross-Coupling Reactions and More . de Meijere A, Bräse S, Oestreich M. Wiley-VCH; Weinheim: 2014: 1259-1314
    • 97b Jacques B, Muñiz K. Palladium Catalysis for Oxidative 1,2-Difunctionalisation of Alkenes. In Catalyzed Carbon–Heteroatom Bond Formation. Yudin AK. Wiley-VCH; Weinheim: 2010: 119-135
    • 97c Jensen KH, Sigman MS. Org. Biomol. Chem. 2008; 6: 4083
    • 98a Muñiz K. Angew. Chem. Int. Ed. 2009; 48: 9412
    • 98b Sehnal P, Taylor RJ. K, Fairlamb IJ. S. Chem. Rev. 2010; 110: 824
  • 99 Stangl H, Jira R. Tetrahedron Lett. 1970; 3589
  • 100 Bäckvall JE, Åkermark B, Ljunggren SO. J. Am. Chem. Soc. 1979; 101: 2411
  • 101 Bäckvall JE. Tetrahedron Lett. 1977; 467
    • 102a El-Qisairi AK, Qaseer HA, Henry PM. J. Organomet. Chem. 2002; 656: 168
    • 102b El-Qisairi A, Henry PM. J. Organomet. Chem. 2000; 603: 50
    • 102c El-Qisairi A, Hamed O, Henry PM. J. Org. Chem. 1998; 63: 2790
    • 102d Francis JW, Henry PM. J. Mol. Catal. 1995; 99: 77
  • 103 El-Qisairi AK, Qaseer HA, Katsigras G, Lorenzi P, Trivedi U, Tracz S, Hartman A, Miller JA, Henry PM. Org. Lett. 2003; 5: 439
  • 104 Chevrin C, Le Bras J, Hénin F, Muzart J. Synthesis 2005; 2615
  • 105 Thiery E, Chevrin C, Le Bras J, Harakat D, Muzart J. J. Org. Chem. 2007; 72: 1859
  • 106 Wahlen J, De Vos DE, Jacobs PA. Org. Lett. 2003; 5: 2293
  • 107 Schultz MJ, Sigman MS. J. Am. Chem. Soc. 2006; 128: 1460
  • 108 Zhang Y, Sigman MS. J. Am. Chem. Soc. 2007; 129: 3076
  • 109 For a review on the use of N-based ligand in palladium-catalysed aerobic oxidation, see: Jin L, Lei A. Sci. China Chem. 2012; 55: 2027
  • 110 Jensen KH, Webb JD, Sigman MS. J. Am. Chem. Soc. 2010; 132: 17471
  • 111 Li Y, Song D, Dong VM. J. Am. Chem. Soc. 2008; 130: 2962
  • 112 Wang A, Jiang H, Chen H. J. Am. Chem. Soc. 2009; 131: 3846
  • 113 Wang A, Jiang H. J. Org. Chem. 2010; 75: 2321
  • 114 Wang W, Wang F, Shi M. Organometallics 2010; 29: 928

    • For examples of N-heterocyclic carbene ligands used in the Wacker oxidation, see ref. 64 and:
    • 115a Scarborough CC, Bergant A, Sazama GT, Guzei IA, Spencer LC, Stahl SS. Tetrahedron 2009; 65: 5084
    • 115b Muñiz K. Adv. Synth. Catal. 2004; 346: 1425
  • 116 Park CP, Lee JH, Yoo KS, Jung KW. Org. Lett. 2010; 12: 2300
  • 117 Park JH, Park CY, Song HS, Huh YS, Kim GH, Park CP. Org. Lett. 2013; 15: 752
  • 118 Neufeldt SR, Sanford MS. Org. Lett. 2013; 15: 46
  • 119 Wickens ZK, Guzmán PE, Grubbs RH. Angew. Chem. Int. Ed. 2015; 54: 236
  • 120 James DE, Stille JK. J. Am. Chem. Soc. 1976; 98: 1810
    • 121a Semmelhack MF, Bodurow C. J. Am. Chem. Soc. 1984; 106: 1496
    • 121b Semmelhack MF, Zhang N. J. Org. Chem. 1989; 54: 4483
  • 122 Wu T, Yin G, Liu G. J. Am. Chem. Soc. 2009; 131: 16354
  • 123 Qiu S, Xu T, Zhou J, Guo Y, Liu G. J. Am. Chem. Soc. 2010; 132: 2856
  • 124 Bäckvall JE. J. Chem. Soc., Chem. Commun. 1977; 413
  • 125 Bäckvall JE. Tetrahedron Lett. 1978; 163
  • 126 Antunes AM. M, Marto SJ. L, Branco PS, Prabhakar S, Lobo AM. Chem. Commun. 2001; 405
  • 127 Han J, Li Y, Zhi S, Pan Y, Timmons C, Li G. Tetrahedron Lett. 2006; 47: 7225
  • 128 Bar LJ, Lloyd-Jones GC, Booker-Milburn KI. J. Am. Chem. Soc. 2005; 127: 7308
  • 129 Du H, Zhao B, Shi Y. J. Am. Chem. Soc. 2007; 129: 762
  • 130 Du H, Yuan W, Zhao B, Shi Y. J. Am. Chem. Soc. 2007; 129: 11688
    • 131a Du H, Zhao B, Shi Y. J. Am. Chem. Soc. 2008; 130: 8590
    • 131b Du H, Yuan W, Zhao B, Shi Y. J. Am. Chem. Soc. 2007; 129: 7496
    • 132a Streuff J, Ho CH, Nieger M, Muñiz K. J. Am. Chem. Soc. 2005; 127: 14586
    • 132b Muñiz K, Hövelmann CH, Streuff J. J. Am. Chem. Soc. 2008; 130: 763
  • 133 Muñiz K, Kirsch J, Chavez P. Adv. Synth. Catal. 2011; 353: 689
  • 134 For an example where NFSI was used as oxidant, see: Iglesias A, Alvarez R, de Lera AR, Muñiz K. Angew. Chem. Int. Ed. 2012; 51: 2225
  • 135 Martínez C, Muñiz K. Angew. Chem. Int. Ed. 2012; 51: 7031
  • 136 Bäckvall JE. Tetrahedron Lett. 1975; 2225
  • 137 Bäckvall JE, Bjorkman FE, Bystrom SE. Tetrahedron Lett. 1982; 23: 943
  • 138 Alexanian EJ, Lee C, Sorensen EJ. J. Am. Chem. Soc. 2005; 127: 7690
  • 139 Liu G, Stahl SS. J. Am. Chem. Soc. 2006; 128: 7179
  • 140 Desai LV, Sanford MS. Angew. Chem. Int. Ed. 2007; 46: 5737
  • 141 Mart C, Wu Y, Weinstein AB, Stahl SS, Liu G, Muñiz K. J. Org. Chem. 2013; 78: 6309
  • 142 Cheng J, Qi X, Li M, Chen P, Liu G. J. Am. Chem. Soc. 2015; 137: 2480