Synthesis 2016; 48(13): 2009-2025
DOI: 10.1055/s-0035-1560440
short review
© Georg Thieme Verlag Stuttgart · New York

Photochemical Synthesis of Azaheterocycles

Gerald J. Tanoury*
Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, USA   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 24 February 2016

Accepted after revision: 03 March 2016

Publication Date:
12 April 2016 (online)


Abstract

Synthetic organic photochemistry is a field that continues to offer unique routes to organic structures not typically accessed from thermal reactions. In this review, the photochemical synthesis of five-, six-, seven-, and eight-membered-ring azaheterocycles, as well as some aza-macrocycles, is discussed. The discussion will focus on methods where heterocycle formation occurs during or as a result of a photochemical event. Reaction mechanisms will be discussed also, as these provide a rationale for understanding the synthetic results.

1 Introduction

2 Five-Membered Rings

2.1 Cyclization Reactions

2.2 Cycloadditions

2.3 From Aromatic and Vinyl Azides

2.4 earrangements

2.5 Other Individual Methods

3 Six-Membered Rings

3.1 Cyclization Reactions

3.2 Isocyanide Insertions

3.3 Cycloadditions

4 Seven-Membered Rings and Larger

5 Conclusion

 
  • References

  • 1 Musacchio AJ, Nguyen LQ, Beard GH, Knowles RR. J. Am. Chem. Soc. 2014; 136: 12217
  • 2 Miller DC, Choi GJ, Orbe HS, Knowles RR. J. Am. Chem. Soc. 2015; 137: 13492
  • 3 Kitamura M, Mori Y, Narasaka K. Tetrahedron Lett. 2005; 46: 2373
  • 4 Qin Q, Yu S. Org. Lett. 2015; 17: 1894
  • 5 Hu X.-Q, Chen J.-R, Wei Q, Liu F.-L, Deng Q.-H, Beauchemin AM, Xiao W.-J. Angew. Chem. Int. Ed. 2014; 53: 12163
  • 6 Deng Q.-H, Chen J.-R, Wei Q, Zhao Q.-Q, Lu L.-Q, Xiao W.-J. Chem. Commun. 2015; 51: 3537
  • 7 da Silva GP, Ali A, da Silva RC, Jiang H, Paixao MW. Chem. Commun. 2015; 51: 15110
  • 8 Yang D, Lian G.-Y, Yang H.-F, Yu J.-D, Zhang D.-W, Gao X. J. Org. Chem. 2009; 74: 8610
  • 9 Morse PD, Nicewicz DA. Chem. Sci. 2015; 6: 270
  • 10 Nakajima K, Kitagawa M, Ashida Y, Miyake Y, Nishibayashi Y. Chem. Commun. 2014; 50: 8900
  • 11 Xuan J, Cheng Y, An J, Lu L.-Q, Zhang X.-X, Xiao W.-J. Chem. Commun. 2011; 47: 8337
  • 12 Liu C, Zhao W, Huang Y, Wang H, Zhang B. Tetrahedron 2015; 71: 4344
  • 13 Nishio T, Asai H, Miyazaki T. Helv. Chim. Acta 2000; 83: 1475
  • 14 Zhu S, Das A, Bui L, Zhou H, Curran DP, Rueping M. J. Am. Chem. Soc. 2013; 135: 1823
  • 15 Wang X, Han B, Wang J, Yu W. Org. Biomol. Chem. 2010; 8: 3865
  • 16 Schultz A, Hagma W. J. Chem. Soc., Chem. Commun. 1976; 726
    • 17a Buden ME, Vaillard VA, Martin SE, Rossi RA. J. Org. Chem. 2009; 74: 4490
    • 17b Laha JK, Barolo SM, Rossi RA, Cuny GD. J. Org. Chem. 2011; 76: 6421
  • 18 Oda K, Sakai M, Ohno K, Machida M. Heterocycles 1999; 50: 277
  • 19 Pedrosa R, Andres C, Nieto J, Del Pozo S. J. Org. Chem. 2003; 68: 4923
  • 20 Fort DA, Woltering TJ, Alker AM, Bach T. Heterocycles 2014; 88: 1079
  • 21 Yagishita F, Sakamoto M, Mino T, Fujita T. Org. Lett. 2011; 13: 6168
  • 22 Rueping M, Leonori D, Poisson T. Chem. Commun. 2011; 47: 9615
  • 23 Zou Y.-Q, Lu L.-Q, Fu L, Chang N.-J, Rong J, Chen J.-R, Xiao W.-J. Angew. Chem. Int. Ed. 2011; 50: 7171
  • 24 Hou H, Zhu S, Pan F, Rueping M. Org. Lett. 2014; 16: 2872
  • 25 Vila C, Lau J, Rueping M. Beilstein J. Org. Chem. 2014; 10: 1233
  • 26 Gesmundo NJ, Grandjean J.-MM, Nicewicz DA. Org. Lett. 2015; 17: 1316
  • 27 Shi Z, Ren Y, Li B, Lu S, Zhang W. Chem. Commun. 2010; 46: 3973
  • 28 Chainikova E, Safiullin R, Spirikhin L, Erastov A. Tetrahedron Lett. 2013; 54: 2140
  • 29 Chainikova E, Teregulova A, Lobov A, Erastov A, Safiullin R. Tetrahedron Lett. 2015; 56: 1332
  • 30 Ren Y.-W, Wang X.-R, Wang W.-X, Li B, Shi Z.-J, Zhang W. Tetrahedron Lett. 2011; 52: 192
  • 31 Sajna KV, Swamy KC. K. J. Org. Chem. 2012; 77: 8712
  • 32 Pace A, Pibiri I, Buscemi S, Vivona N, Malpezzi L. J. Org. Chem. 2004; 69: 4108
  • 33 Buscemi S, Pace A, Calabrese R, Vivona N, Metrangolo P. Tetrahedron 2001; 57: 5865
  • 34 Buscemi S, Vivona N, Caronna T. J. Org. Chem. 1995; 60: 4096
  • 35 Pace A, Pierro P. Org. Biomol. Chem. 2009; 7: 4337
  • 36 Pace A, Buscemi S, Vivona N, Silvestri A, Barone G. J. Org. Chem. 2006; 71: 2740
  • 37 Drouin A, Winter DK, Pichette S, Aubert-Nicol S, Lessard J, Spino C. J. Org. Chem. 2011; 76: 164
  • 38 Nagy J, Madarasz Z, Rapp R, Szollosy A, Nyitrai J, Dopp D. J. Prakt. Chem. 2000; 342: 281
  • 39 Lin W.-C, Yang D.-Y. Org. Lett. 2013; 15: 4862
  • 40 Li S.-C, Jhang W.-F, Liou T.-J, Yang D.-Y. Dyes Pigm. 2015; 114: 259
  • 41 Wade AR, Pawar HR, Biware MV, Chikate RC. Green Chem. 2015; 17: 3879
  • 42 Linsenmeier AM, Williams CM, Bräse S. J. Org. Chem. 2011; 76: 9127
    • 43a Buden ME, Dorn VB, Gamba M, Pierini AB, Rossi RA. J. Org. Chem. 2010; 75: 2206
    • 43b Barolo SM, Teng X, Cuny GD, Rossi RA. J. Org. Chem. 2006; 71: 8493
    • 43c Vaillard VA, Buden ME, Martin SE, Rossi RA. Tetrahedron Lett. 2009; 50: 3829
  • 44 Badger GM, Joshua CP, Lewis GE. Tetrahedron Lett. 1964; 5: 3711
  • 45 Kessar SV, Gupta YP, Dhingra K, Sharma GS, Narula S. Tetrahedron Lett. 1977; 18: 1459
  • 46 Mizuno K, Pac C, Sakurai H. Bull. Chem. Soc. Jpn. 1973; 46: 3316
  • 47 McBurney RT, Slawin AM. Z, Smart LA, Yu Y, Walton JC. Chem. Commun. 2011; 47: 7974
  • 48 Linsenmeier AM, Williams CM, Bräse S. Eur. J. Org. Chem. 2013; 3847
  • 49 Peisino LE, Camargo Solorzano GP, Buden ME, Pierini AB. RSC Adv. 2015; 5: 36374
  • 50 Liao H.-H, Hsiao C.-C, Sugiono E, Rueping M. Chem. Commun. 2013; 49: 7953
  • 51 Nguyen TM, Nicewicz DA. J. Am. Chem. Soc. 2013; 135: 9588
  • 52 Gulakova EN, Berdnikova DV, Aliyeu TM, Fedorov YV, Godovikov IA, Fedorova OA. J. Org. Chem. 2014; 79: 5533
  • 53 Alonso R, Campos PJ, Garcia B, Rodriguez MA. Org. Lett. 2006; 8: 3521
  • 54 Alonso R, Caballero A, Campos PJ, Rodriguez MA. Tetrahedron 2010; 66: 8828
  • 55 Xuan J, Feng Z.-J, Duan S.-W, Xiao W.-J. RSC Adv. 2012; 2: 4065
  • 56 Buden ME, Rossi RA. Tetrahedron Lett. 2007; 48: 8739
  • 57 Zhang B, Studer A. Chem. Soc. Rev. 2015; 44: 3505
  • 58 Liang Z, Xu S, Tian W, Zhang R. Beilstein J. Org. Chem. 2015; 11: 425
  • 59 Kumar NN. B, Kuznetsov DM, Kutateladze AG. Org. Lett. 2015; 17: 438
  • 60 Mukhina OA, Kumar NN. B, Cowger TM, Kutateladze AG. J. Org. Chem. 2014; 79: 10956
  • 61 Cronk WC, Mukhina OA, Kutateladze AG. J. Org. Chem. 2014; 79: 1235
  • 62 Sund C, Thiering S, Thiem J, Kopf J, Stark M. Monatsh. Chem. 2002; 133: 485
  • 63 Hickford PJ, Baker JR, Bruce I, Booker-Milburn KI. Org. Lett. 2007; 9: 4681
  • 64 Shen Y.-M, Yang X.-L, Chen D.-Q, Xue J, Zhu L, Fun H.-K, Hu H.-W, Xu J.-H. Chem. Eur. J. 2010; 16: 2873
  • 65 Tang J, Jiang Y.-l, Wang B.-x, Shen Y.-m. Z. Naturforsch., C 2014; 69: 283
  • 66 Park HJ, Choi JH, Park BN, Yoon UC, Cho DW, Mariano PS. Res. Chem. Intermed. 2012; 38: 847