Synthesis 2016; 48(10): 1421-1436
DOI: 10.1055/s-0035-1560429
review
© Georg Thieme Verlag Stuttgart · New York

Dimethyl Sulfoxide as a Synthon in Organic Chemistry

Ebenezer Jones-Mensah
Department of Chemistry, University of Idaho, Moscow, ID 83844-2343, USA   Email: jmagolan@uidaho.edu
,
Megha Karki
Department of Chemistry, University of Idaho, Moscow, ID 83844-2343, USA   Email: jmagolan@uidaho.edu
,
Jakob Magolan*
Department of Chemistry, University of Idaho, Moscow, ID 83844-2343, USA   Email: jmagolan@uidaho.edu
› Author Affiliations
Further Information

Publication History

Received: 24 January 2016

Accepted after revision: 22 February 2016

Publication Date:
10 March 2016 (online)


Abstract

Dimethyl sulfoxide is generally characterized as a solvent and oxidant rather than as a substrate, building block, or synthon in organic chemistry. However, an abundance of reports have recently appeared that demonstrate dimethyl sulfoxide acting in these roles. This review article offers a comprehensive summary of the literature on this topic until the end of 2015. Synthetic transformations that have utilized the ‘C–S–C’, ‘C’, and ‘C–S’ fragments of dimethyl sulfoxide as building blocks are systematically summarized.

1 Introduction

2 History and Recent Highlights of DMSO-Based Oxidations

3 DMSO-Based Methylthiomethylation (–CH2SMe)

4 DMSO as a One-Carbon Synthon

4.1 DMSO-Based Methylation (–Me)

4.2 DMSO-Based Methylenation (–CH2–)

4.3 DMSO-Based Annulation/Aromatization (=CH–)

4.4 DMSO-Based Formylation (–CHO)

4.5 DMSO-Based Cyanation (–CN)

5 DMSO as Synthon for ‘S–C’ Functionalities

5.1 DMSO-Based Thiomethylation (–SMe)

5.2 DMSO-Based Methylsulfonylation (–SO2Me)

6 Summary and Conclusions

 
  • References

  • 1 Martin D, Weise A, Niclas HJ. Angew. Chem. Int. Ed. 1967; 6: 318
    • 2a Epstein WW, Sweat FW. Chem. Rev. 1967; 67: 247
    • 2b Tidwell TT. Org. React. (N.Y.) 1990; 39: 297
    • 2c Tidwell TT. Synthesis 1990; 857
    • 2d Lee TV In Comprehensive organic synthesis: selectivity, strategy, and efficiency in modern organic chemistry. Vol. 7. Pergamon Press; Oxford: 1991: 857
    • 2e Tojo G, Fernández M In Oxidation of Alcohols to Aldehydes and Ketones: A Guide to Current Common Practice. Springer; Berlin: 2006: 97
  • 3 Wu X.-F, Natte K. Adv. Synth. Catal. 2016; 358: 336
    • 4a Pfitzner KE, Moffatt JG. J. Am. Chem. Soc. 1963; 85: 3027
    • 4b Pfitzner KE, Moffatt JG. J. Am. Chem. Soc. 1965; 87: 5661
    • 5a Fenselau AH, Moffatt JG. J. Am. Chem. Soc. 1966; 88: 1762
    • 5b Moffatt JG. J. Org. Chem. 1971; 36: 1909
    • 5c Omura K, Swern D. Tetrahedron 1978; 34: 1651
  • 6 Albright JD, Goldman L. J. Am. Chem. Soc. 1965; 87: 4214
  • 7 Onodera K, Hirano S, Kashimura N. J. Am. Chem. Soc. 1965; 87: 4651
  • 8 Parikh JR, Doering Wv. E. J. Am. Chem. Soc. 1967; 89: 5505
  • 9 Omura K, Sharma AK, Swern D. J. Org. Chem. 1976; 41: 957
  • 10 Mancuso AJ, Swern D. Synthesis 1981; 165
  • 11 Kawaguchi T, Miyata H, Ataka K, Mae K, Yoshida Ji. Angew. Chem. Int. Ed. 2005; 44: 2413
  • 12 Pandey SK, Bisai A, Singh VK. Synth. Commun. 2007; 37: 4099
  • 13 Khenkin AM, Neumann R. J. Org. Chem. 2002; 67: 7075
  • 14 Bisai A, Chandrasekhar M, Singh VK. Tetrahedron Lett. 2002; 43: 8355
  • 15 De Luca L, Giacomelli G, Porcheddu A. J. Org. Chem. 2001; 66: 7907
  • 16 Palomo C, Cossio FP, Ontoria JM, Odriozola JM. J. Org. Chem. 1991; 56: 5948
  • 17 Takano S, Inomata K, Tomita Si, Yanase M, Samizu K, Ogasawara K. Tetrahedron Lett. 1988; 29: 6619
  • 18 Taber DF, Amedio Jr JC, Jung KY. J. Org. Chem. 1987; 52: 5621
  • 19 Liu Y, Vederas JC. J. Org. Chem. 1996; 61: 7856
  • 20 Nishide K, Patra PK, Matoba M, Shanmugasundaram K, Node M. Green Chem. 2004; 6: 142
  • 21 He X, Chan TH. Tetrahedron 2006; 62: 3389
  • 22 Tsuchiya D, Tabata M, Moriyama K, Togo H. Tetrahedron 2012; 68: 6849
  • 23 Choi MK. W, Toy PH. Tetrahedron 2003; 59: 7171
    • 24a Crich D, Neelamkavil S. J. Am. Chem. Soc. 2001; 123: 7449
    • 24b Crich D, Neelamkavil S. Tetrahedron 2002; 58: 3865
  • 25 Kornblum N, Powers JW, Anderson GJ, Jones WJ, Larson HO, Levand O, Weaver WM. J. Am. Chem. Soc. 1957; 79: 6562
    • 26a Sanz R, Aguado R, Pedrosa MR, Arnáiz FJ. Synthesis 2002; 856
    • 26b Hirano M, Yakabe S, Monobe H, Morimoto T. J. Chem. Res., Synop. 1998; 472
    • 26c Snyder DC. J. Org. Chem. 1995; 60: 2638
    • 26d Tam JP, Wu CR, Liu W, Zhang JW. J. Am. Chem. Soc. 1991; 113: 6657
    • 26e Lowe OG. J. Org. Chem. 1975; 40: 2096
    • 27a Mousset C, Provot O, Hamze A, Bignon J, Brion J.-D, Alami M. Tetrahedron 2008; 64: 4287
    • 27b Giraud A, Provot O, Peyrat J.-F, Alami M, Brion J.-D. Tetrahedron 2006; 62: 7667
    • 27c Wan Z, Jones CD, Mitchell D, Pu JY, Zhang TY. J. Org. Chem. 2006; 71: 826
    • 27d Yusubov MS.-o, Filimonov VD. Synthesis 1991; 131
    • 27e Wolfe S, Pilgrim W, Garrard T, Chamberlain P. Can. J. Chem. 1971; 49: 1099
  • 28 Traynelis VJ, Ode RH. J. Org. Chem. 1970; 35: 2207
  • 29 Datta-Gupta N, Williams GE. J. Org. Chem. 1971; 36: 2019
  • 30 Javed MI, Brewer M. Org. Lett. 2007; 9: 1789
  • 31 Le HV, Ganem B. Org. Lett. 2011; 13: 2584
  • 32 Shahi SP, Gupta A, Pitre SV, Ram Reddy MV, Kumareswaran R, Vankar YD. J. Org. Chem. 1999; 64: 4509
  • 33 Creary X, Losch A. Org. Lett. 2008; 10: 4975
  • 34 Lopez-Alvarado P, Steinhoff J, Miranda S, Avendano C, Menéndez JC. Tetrahedron 2009; 65: 1660
  • 35 Deng Y, Jin X, Fu C, Ma S. Org. Lett. 2009; 11: 2169
  • 36 Tomita R, Yasu Y, Koike T, Akita M. Angew. Chem. Int. Ed. 2014; 53: 7144
  • 37 Ashikari Y, Nokami T, Yoshida J.-i. J. Am. Chem. Soc. 2011; 133: 11840
  • 38 Choudhury LH, Parvin T, Khan AT. Tetrahedron 2009; 65: 9513
  • 39 Song S, Sun X, Li X, Yuan Y, Jiao N. Org. Lett. 2015; 17: 2886
    • 40a Majetich G, Hicks R, Reister S. J. Org. Chem. 1997; 62: 4321
    • 40b Liu C, Dai R, Yao G, Deng Y. J. Chem. Res. 2014; 38: 593
  • 41 Liang Y.-F, Wu K, Song S, Li X, Huang X, Jiao N. Org. Lett. 2015; 17: 876
    • 42a Cao Z, Shi D, Qu Y, Tao C, Liu W, Yao G. Molecules 2013; 18: 15717
    • 42b Floyd MB, Du MT, Fabio PF, Jacob LA, Johnson BD. J. Org. Chem. 1985; 50: 5022
    • 42c Bauer DP, Macomber RS. J. Org. Chem. 1975; 40: 1990
    • 42d Schipper E, Cinnamon M, Rascher L, Chiang Y, Oroshnik W. Tetrahedron Lett. 1968; 9: 6201
  • 43 Song S, Li X, Sun X, Yuan Y, Jiao N. Green Chem. 2015; 17: 3285
  • 44 Karki M, Magolan J. J. Org. Chem. 2015; 80: 3701
    • 45a Azeredo JB, Godoi M, Martins GM, Silveira CC, Braga AL. J. Org. Chem. 2014; 79: 4125
    • 45b Xiao F, Xie H, Liu S, Deng GJ. Adv. Synth. Catal. 2014; 356: 364
    • 45c Ge W, Wei Y. Green Chem. 2012; 14: 2066
  • 46 Yuan Y, Zhu H. Eur. J. Org. Chem. 2012; 329
  • 47 Bur SK, Padwa A. Chem. Rev. 2004; 104: 2401
  • 48 Wuts PG, Greene TW. Greene’s protective groups in organic synthesis . John Wiley & Sons; New York: 2006
  • 49 Yamada K, Kato K, Nagase H, Hirata Y. Tetrahedron Lett. 1976; 17: 65
  • 50 Pojer PM, Angyal SJ. Aust. J. Chem. 1978; 31: 1031
  • 51 Zavgorodny S, Polianski M, Besidsky E, Kriukov V, Sanin A, Pokrovskaya M, Gurskaya G, Lönnberg H, Azhayev A. Tetrahedron Lett. 1991; 32: 7593
  • 52 Shen T, Huang X, Liang Y.-F, Jiao N. Org. Lett. 2015; 17: 6186
  • 53 Jiang X, Wang C, Wei Y, Xue D, Liu Z, Xiao J. Chem. Eur. J. 2014; 20: 58
  • 54 Traynelis VJ, Hergenrother WL. J. Org. Chem. 1964; 29: 221
  • 55 Wang J, Rochon FD, Yang Y, Hua L, Kayser MM. Tetrahedron: Asymmetry 2007; 18: 1115
  • 56 Mahajan PS, Tanpure SD, More NA, Gajbhiye JM, Mhaske SB. RSC Adv. 2015; 5: 101641
  • 57 Wang Q, Sun L, Jiang Y, Li C. Beilstein J. Org. Chem. 2008; 4: 51
  • 58 Sun K, Wang X, Jiang Y, Lv Y, Zhang L, Xiao B, Li D, Zhu Z, Liu L. Chem. Asian J. 2015; 10: 536
  • 59 Pan X, Liu Q, Chang L, Yuan G. RSC Adv. 2015; 5: 51183
  • 60 Lv Y, Li Y, Xiong T, Pu W, Zhang H, Sun K, Liu Q, Zhang Q. Chem. Commun. 2013; 49: 6439
  • 61 Wang F, Shen J, Cheng G, Cui X. RSC Adv. 2015; 5: 73180
  • 62 Fei H, Yu J, Jiang Y, Guo H, Cheng J. Org. Biomol. Chem. 2013; 11: 7092
  • 63 Qian J, Zhang Z, Liu Q, Liu T, Zhang G. Adv. Synth. Catal. 2014; 356: 3119
  • 64 Zhang Z, Tian Q, Qian J, Liu Q, Liu T, Shi L, Zhang G. J. Org. Chem. 2014; 79: 8182
  • 65 Cao H, Lei S, Li N, Chen L, Liu J, Cai H, Qiu S, Tan J. Chem. Commun. 2015; 51: 1823
  • 66 Chu G, Yu Z, Gao F, Li C. Synth. Commun. 2013; 43: 44
  • 67 Wang Y.-F, Zhang F.-L, Chiba S. Synthesis 2012; 44: 1526
  • 68 Kawakami T, Suzuki H. Tetrahedron Lett. 2000; 41: 7093
  • 69 Ren X, Chen J, Chen F, Cheng J. Chem. Commun. 2011; 47: 6725
  • 70 Patil SM, Kulkarni S, Mascarenhas M, Sharma R, Roopan SM, Roychowdhury A. Tetrahedron 2013; 69: 8255
  • 71 Luo F, Pan C, Li L, Chen F, Cheng J. Chem. Commun. 2011; 47: 5304
  • 72 Ghosh K, Ranjit S, Mal D. Tetrahedron Lett. 2015; 56: 5199
  • 73 Jones-Mensah E, Magolan J. Tetrahedron Lett. 2014; 55: 5323
  • 74 Chu L, Yue X, Qing F.-L. Org. Lett. 2010; 12: 1644
  • 75 Sharma P, Rohilla S, Jain N. J. Org. Chem. 2015; 80: 4116
  • 76 Dai C, Xu Z, Huang F, Yu Z, Gao Y.-F. J. Org. Chem. 2012; 77: 4414
  • 77 Liu F.-L, Chen J.-R, Zou Y.-Q, Wei Q, Xiao W.-J. Org. Lett. 2014; 16: 3768
  • 78 Li H.-Y, Xing L.-J, Lou M.-M, Wang H, Liu R.-H, Wang B. Org. Lett. 2015; 17: 1098
  • 79 Gao X, Pan X, Gao J, Jiang H, Yuan G, Li Y. Org. Lett. 2015; 17: 1038
  • 80 Shukla G, Srivastava A, Nagaraju A, Raghuvanshi K, Singh MS. Adv. Synth. Catal. 2015; 357: 3969
  • 81 Yuan G, Zheng J, Gao X, Li X, Huang L, Chen H, Jiang H. Chem. Commun. 2012; 48: 7513
  • 82 Jiang Y, Loh T.-P. Chem. Sci. 2014; 5: 4939
  • 83 Eberhardt MK, Colina R. J. Org. Chem. 1988; 53: 1071
  • 84 Gao X, Pan X, Gao J, Huang H, Yuan G, Li Y. Chem. Commun. 2015; 51: 210