Synthesis 2015; 47(22): 3451-3459
DOI: 10.1055/s-0035-1560354
short review
© Georg Thieme Verlag Stuttgart · New York

Combined Asymmetric Aminocatalysis and Carbene Catalysis

Jing Gu
Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. of China   Email: ycchen@scu.edu.cn
,
Wei Du
Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. of China   Email: ycchen@scu.edu.cn
,
Ying-Chun Chen*
Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. of China   Email: ycchen@scu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 19 August 2015

Accepted after revision: 17 September 2015

Publication Date:
15 October 2015 (online)


Abstract

The use of multiple catalytic systems for cascade reactions has found widespread application in recent years. The combination of two important organocatalysts, chiral amines and N-heterocyclic carbenes (NHCs), is of extraordinary interest since they can both potentially mediate a variety of reactions with aldehyde derivatives. In this short review, we discuss the successful combination of asymmetric aminocatalysis and carbene catalysis in the efficient construction of complex chiral architectures, either in a relay or sequential manner.

1 Introduction

2 NHC-Catalyzed Redox Reaction Combined with Aminocatalysis

3 NHC-Catalyzed Benzoin Condensation Combined with Aminocatalysis

4 NHC-Catalyzed Stetter reaction Combined with Aminocatalysis

5 Miscellaneous NHC Catalysis Combined with Aminocatalysis

6 Summary

 
  • References


    • For selected reviews, see:
    • 1a Pellissier H. Tetrahedron 2013; 69: 7171
    • 1b Patil NT, Shinde VS, Gajula B. Org. Biomol. Chem. 2012; 10: 211
    • 1c Cohen DT, Scheidt KA. Chem. Sci. 2012; 3: 53
    • 1d Wende RC, Schreiner PR. Green Chem. 2012; 14: 1821
    • 1e Allen AE, MacMillan DW. C. Chem. Sci. 2012; 3: 633
    • 1f Piovesana S, Schietroma DM. S, Bella M. Angew. Chem. Int. Ed. 2011; 50: 6216
    • 1g Ambrosini LM, Lambert TH. ChemCatChem 2010; 2: 1373
    • 1h Zhou J. Chem. Asian J. 2010; 5: 422
    • 1i Zhong C, Shi X. Eur. J. Org. Chem. 2010; 2999
    • 1j Grondal C, Jeanty M, Enders D. Nat. Chem. 2010; 2: 167

      For reviews on aminocatalysis, see:
    • 2a Erkkilä A, Majander I, Pihko PM. Chem. Rev. 2007; 107: 5416
    • 2b Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
    • 2c Nielsen M, Worgull D, Zweifel T, Gschwend B, Bertelsen S, Jørgensen KA. Chem. Commun. 2011; 47: 632
    • 2d Li J.-L, Liu T.-Y, Chen Y.-C. Acc. Chem. Res. 2012; 45: 1491
    • 2e Jiang H, Albrecht Ł, Jørgensen KA. Chem. Sci. 2013; 4: 2287
  • 3 Breslow R. J. Am. Chem. Soc. 1958; 80: 3719
    • 4a Seebach D. Angew. Chem., Int. Ed. Engl. 1979; 18: 239
    • 4b Enders D, Balensiefer T. Acc. Chem. Res. 2004; 37: 534
    • 4c Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
    • 4d Marion N, Díez-González S, Nolan SP. Angew. Chem. Int. Ed. 2007; 46: 2988
    • 4e Biju AT, Kuhl N, Glorius F. Acc. Chem. Res. 2011; 44: 1182
    • 4f Nair V, Menon RS, Biju AT, Sinu CR, Paul RR, Jose A, Sreekumar V. Chem. Soc. Rev. 2011; 40: 5336
    • 4g Grossmann A, Enders D. Angew. Chem. Int. Ed. 2012; 51: 314

      For examples of combined catalysis of tertiary amine and NHC, see:
    • 5a Filloux CM, Lathrop SP, Rovis T. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 20666
    • 5b Youn SW, Song HS, Park JH. Org. Lett. 2014; 16: 1028

      For reviews, see:
    • 6a Vora HU, Wheeler P, Rovis T. Adv. Synth. Catal. 2012; 354: 1617
    • 6b Zeitler K. Angew. Chem. Int. Ed. 2005; 44: 7506

      For reviews, see:
    • 7a De Sarkar S, Biswas A, Samanta RC, Studer A. Chem. Eur. J. 2013; 19: 4664
    • 7b Knappke CE. I, Imami A, von Wangelin AJ. ChemCatChem 2012; 4: 937
  • 8 Zhao G.-L, Córdova A. Tetrahedron Lett. 2007; 48: 5976
  • 9 Jiang H, Gschwend B, Albrecht Ł, Jørgensen KA. Org. Lett. 2010; 12: 5052
  • 10 Deiana L, Dziedzic P, Zhao G.-L, Vesely J, Ibrahem I, Rios R, Sun J, Córdova A. Chem. Eur. J. 2011; 17: 7904
  • 11 Phillips EM, Wadamoto M, Roth HS, Ott AW, Scheidt KA. Org. Lett. 2009; 11: 105
  • 12 Jacobsen CB, Albrecht Ł, Udmark J, Jørgensen KA. Org. Lett. 2012; 14: 5526
    • 13a Chan A, Scheidt KA. J. Am. Chem. Soc. 2006; 128: 4558
    • 13b Molina MT, Navarro C, Moreno A, Csáky AG. J. Org. Chem. 2009; 74: 9573
    • 13c Sreenivasulu M, Kumar KA, Reddy KS, Kumar KS, Kumar PR, Chandrasekhar KB, Pal M. Tetrahedron Lett. 2011; 52: 727
    • 13d Du D, Lu Y, Jin J, Tang W, Lu T. Tetrahedron 2011; 67: 7557
  • 14 Ma C, Jia Z.-J, Liu J.-X, Zhou Q.-Q, Dong L, Chen Y.-C. Angew. Chem. Int. Ed. 2013; 52: 948
  • 15 Ugai T, Tanaka S, Dokawa S. Yakugaku Zasshi 1943; 63: 296
  • 16 Lathrop SP, Rovis T. J. Am. Chem. Soc. 2009; 131: 13628
  • 17 Ozboya KE, Rovis T. Chem. Sci. 2011; 2: 1835
  • 18 Enders D, Grossmann A, Huang H, Raabe G. Eur. J. Org. Chem. 2011; 4298
  • 19 Jacobsen CB, Jensen KL, Udmark J, Jørgensen KA. Org. Lett. 2011; 13: 4790
  • 20 Liu Y.-K, Nappi M, Arceo E, Vera S, Melchiorre P. J. Am. Chem. Soc. 2011; 133: 15212
  • 21 Liu Y.-K, Nappi M, Escudero-Adán EC, Melchiorre P. Org. Lett. 2012; 14: 1310
  • 22 Jia Z.-J, Jiang K, Zhou Q.-Q, Dong L, Chen Y.-C. Chem. Commun. 2013; 49: 5892
    • 23a Feng X, Zhou Z, Ma C, Yin X, Li R, Dong L, Chen Y.-C. Angew. Chem. Int. Ed. 2013; 52: 14173
    • 23b Gu J, Ma C, Li Q.-Z, Chen Y.-C. Org. Lett. 2014; 16: 3986
  • 24 Ma C, Gu J, Teng B, Zhou Q.-Q, Li R, Chen Y.-C. Org. Lett. 2013; 15: 6206

    • Only activated ketimines have been utilized in aza-benzoin reactions with limited examples; see:
    • 25a Enders D, Henseler A, Lowins S. Synthesis 2009; 4125
    • 25b Sun L.-H, Liang Z.-Q, Jia W.-Q, Ye S. Angew. Chem. Int. Ed. 2013; 52: 5803
  • 26 He G, Wu F, Huang W, Zhou R, Ouyang L, Han B. Adv. Synth. Catal. 2014; 356: 2311

    • Under basic conditions, the α-hydroxy ketone would easily form an anion intermediate and be oxidized to dicarbonyl co-products:
    • 27a Winkelmann O, Näther C, Lüning U. Org. Biomol. Chem. 2009; 7: 553
    • 27b Yoshida M, Terai N, Shishido K. Tetrahedron 2010; 66: 8922
    • 27c Ye W, Cai G, Zhuang Z, Jia X, Zhai H. Org. Lett. 2005; 7: 3769
    • 28a Liu Y.-K, Li R, Yue L, Li B.-J, Chen Y.-C, Wu Y, Ding L.-S. Org. Lett. 2006; 8: 1521
    • 28b Kim M.-J, Yang J.-W. Bull. Korean Chem. Soc. 2012; 33: 3122
  • 29 Liu J.-X, Zhou Q.-Q, Deng J.-G, Chen Y.-C. Org. Biomol. Chem. 2013; 11: 8175
  • 30 Stetter H, Kuhlmann H. Chem. Ber. 1976; 109: 2890
  • 31 Hong B.-C, Dange NS, Hsu C.-S, Liao J.-H, Lee G.-H. Org. Lett. 2011; 13: 1338
  • 32 Ryan SJ, Candish L, Lupton DW. Chem. Soc. Rev. 2013; 42: 4906

    • For recent reviews on new types of NHC-catalyzed reactions, see:
    • 33a Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem. Rev. 2015; 115: 9307
    • 33b Hopkinson MN, Richter C, Schedler M, Glorius F. Nature (London, U.K.) 2014; 510: 485

    • For selected examples, see:
    • 33c Fu Z, Xu J, Zhu T, Leong WW. Y, Chi YR. Nat. Chem. 2013; 5: 835
    • 33d White NA, Rovis T. J. Am. Chem. Soc. 2014; 136: 14674