Synthesis 2015; 47(24): 3823-3845
DOI: 10.1055/s-0035-1560346
review
© Georg Thieme Verlag Stuttgart · New York

C–H Bond Transformations Leading to the Synthesis of Organic Functional Materials

Yoichiro Kuninobu*
a   Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan   Email: kuninobu@mol.f.u-tokyo.ac.jp
b   CREST, Japan Science and Technology Agency (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
,
Shunsuke Sueki
a   Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan   Email: kuninobu@mol.f.u-tokyo.ac.jp
b   CREST, Japan Science and Technology Agency (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
› Author Affiliations
Further Information

Publication History

Received: 23 July 2015

Accepted after revision: 10 August 2015

Publication Date:
24 September 2015 (online)


Abstract

In this review, transition-metal-catalyzed or -mediated C–H transformations leading to the synthesis of organic functional materials, such as oligomers, polymers, and π-conjugated molecules, are summarized.

1 Introduction

2 Oligomers and Polymers

2.1 Synthesis of Oligomers and Polymers

2.2 Chemical Modification of Polymers

3 π-Conjugated Molecules

3.1 Indenes and Fluorenes

3.2 Acenes

3.3 Triphenylenes

3.4 Chemical Modification of Perylene Diimides

3.5 Nanographenes

3.6 Condensed Polycyclic π-Conjugated Molecules with Five-Membered Heteroaromatic Rings

3.7 π-Conjugated Molecules with Nitrogen-Containing Six-Membered Heteroaromatics

3.8 Porphyrins

3.9 Miscellaneous (π-Conjugated Molecules)

4 Miscellaneous (Excluding Polymers and π-Conjugated Molecules)

5 Outlook and Conclusions

 
  • References


    • Recent reviews on C–H bond functionalizations:
    • 1a C–H Activation . In Topics in Current Chemistry . Vol. 292. Yu J.-Q., Shi Z.-J., Springer; Berlin: 2010
    • 1b Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
    • 1c Mkhalid IA. I, Barnard JH, Marder TB, Murphy JM, Hartwig JF. Chem. Rev. 2010; 110: 890
    • 1d Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 1e Ackermann L. Chem. Rev. 2011; 111: 1315
    • 1f Kuninobu Y, Takai K. Chem. Rev. 2011; 111: 1938
    • 1g Wencel-Delord J, Dröge T, Liu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
    • 1h Cho SH, Kim JY, Kwak J, Chang S. Chem. Soc. Rev. 2011; 40: 5068
    • 1i Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
    • 1j Zhu C, Wang R, Falck JR. Chem. Asian J. 2012; 7: 1502
    • 1k Li B.-J, Shi Z.-J. Chem. Soc. Rev. 2012; 41: 5588
    • 1l Arockiam PB, Bruneau C, Dixneuf PH. Chem. Rev. 2012; 112: 5879
    • 1m Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 1n Kuhl N, Hopkinson MN, Wencel-Delord J, Glorius F. Angew. Chem. Int. Ed. 2012; 51: 10236
    • 1o Rouquet G, Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
    • 2a Wencel-Delord J, Glorius F. Nat. Chem. 2013; 5: 369
    • 2b Okamoto K, Zhang J, Housekeeper JB, Marder SR, Luscombe CK. Macromolecules 2013; 46: 8059
    • 2c Segawa Y, Maekawa T, Itami K. Angew. Chem. Int. Ed. 2015; 54: 66
    • 3a Thomas III SW, Joly GD, Swager TM. Chem. Rev. 2007; 107: 1339
    • 3b Blouin I, Leclerc M. Acc. Chem. Res. 2008; 41: 1110
    • 3c Osaka I, Mccullough RD. Acc. Chem. Res. 2008; 41: 1202
    • 3d Grimsdale AC, Chan KL, Martin RE, Jokisz PG, Holmes AB. Chem. Rev. 2009; 109: 897
    • 3e Scherf U, Adamczyk S, Gutacker A, Koenen N. Macromol. Rapid Commun. 2009; 30: 1059
    • 4a Bao Z, Chen Y, Cai R, Yu L. Macromolecules 1990; 26: 5281
    • 4b Tolosa J, Kub C, Bunz UH. F. Angew. Chem. Int. Ed. 2009; 48: 4610
    • 4c Lee SK, Cho NS, Cho S, Moon S.-J, Lee JK, Bazan GC. J. Polym. Sci., Part A: Polym. Chem. 2009; 47: 6873
    • 4d Qin R, Li W, Li C, Veit DC, Schleiermacher H.-F, Andersson M, Bo Z, Liu Z, Inganäs O, Wuerfel U, Zhang F. J. Am. Chem. Soc. 2009; 131: 14612
    • 4e Chen C.-C, Lai M.-H, Tsai J.-H, Wang C.-F, Chen W.-C. J. Polym. Sci., Part A: Polym. Chem. 2010; 48: 74
    • 5a Guo H, Tapsak MA, Weber WP. Macromolecules 1995; 28: 4714
    • 5b Guo H, Wang G, Tapsak MA, Weber WP. Macromolecules 1995; 28: 5686
    • 5c Lu P, Paulasaari JK, Weber WP. Macromolecules 1996; 29: 8583
    • 5d Wang G, Guo H, Weber WP. J. Organomet. Chem. 1996; 521: 351
  • 6 Sueki S, Guo Y, Kanai M, Kuninobu Y. Angew. Chem. Int. Ed. 2013; 52: 11879
  • 7 Masuda N, Tanba S, Sugie A, Monguchi D, Koumura N, Hara K, Mori A. Org. Lett. 2009; 11: 2297
  • 8 Gao M, Lam JW. Y, Liu Y, Li J, Tang BZ. Polym. Chem. 2013; 4: 2841
  • 9 Sévignon M, Papillon J, Schulz E, Lemaire M. Tetrahedron Lett. 1999; 40: 5873
    • 10a Wang Q, Takita R, Kikuzaki Y, Ozawa F. J. Am. Chem. Soc. 2010; 132: 11420
    • 10b Wang Q, Wakioka M, Ozawa F. Macromol. Rapid Commun. 2012; 33: 1203
    • 10c Wakioka M, Kitano Y, Ozawa F. Macromolecules 2013; 46: 370
    • 10d Wakioka M, Ichihara N, Kitano Y, Ozawa F. Macromolecules 2014; 47: 626

      For further examples of the formation of polythiophenes see:
    • 11a Tamba S, Tanaka S, Okubo Y, Meguro H, Okamoto S, Mori A. Chem. Lett. 2011; 40: 398
    • 11b Okamoto K, Housekeeper JB, Michael FE, Luscombe CK. Polym. Chem. 2013; 4: 3499
    • 12a Lu W, Kuwabara J, Kanbara T. Macromolecules 2011; 44: 1252
    • 12b Lu W, Kuwabara J, Iijima T, Higashimura H, Hayashi H, Kanbara T. Macromolecules 2012; 45: 4128
  • 13 For another �example of the �synthesis of �π-conjugated �polymers, see: Huang Q, Qin X, Li B, Lan J, Guo Q, You J. Chem. Commun. 2014; 50: 13739
    • 14a Kondo Y, García-Cuadrado D, Hartwig JF, Boaen NK, Wagner NL, Hillmyer MA. J. Am. Chem. Soc. 2002; 124: 1164
    • 14b Bae C, Hartwig JF, Harris NK. B, Long RO, Anderson KS, Hillmyer MA. J. Am. Chem. Soc. 2005; 127: 767
    • 14c Bae C, Hartwig JF, Chung H, Harris NK, Switek KA, Hillmyer MA. Angew. Chem. Int. Ed. 2005; 44: 6410
    • 15a Shin J, Jensen SM, Ju J, Lee S, Xue Z, Noh SK, Bae C. Macromolecules 2007; 40: 8600
    • 15b Jo TS, Kim SH, Shin J, Bae C. J. Am. Chem. Soc. 2009; 131: 1656
  • 16 For a review of post-polymerization functionalization of polyolefins, see: Boaen NK, Hillmyer MA. Chem. Soc. Rev. 2005; 34: 267
  • 17 Kaneko H, Nagae H, Tsurugi H, Mashima K. J. Am. Chem. Soc. 2011; 133: 19626

    • For examples, see:
    • 18a Yeh H.-C, Chien C.-H, Shih P.-I, Yuan M.-C, Shu C.-F. Macromolecules 2008; 41: 3801
    • 18b Zhu M, Ye T, Li C.-G, Cao X, Zhong C, Ma D, Qin J, Yang C. J. Phys. Chem. C 2011; 115: 17965
  • 19 For example, see: Pu K.-Y, Zhan R, Liu B. Chem. Commun. 2010; 46: 1470
  • 20 Morimoto K, Itoh M, Hirano K, Satoh T, Shibata Y, Tanaka K, Miura M. Angew. Chem. Int. Ed. 2012; 51: 5359
  • 21 Itoh M, Hirano K, Satoh T, Shibata Y, Tanaka K, Miura M. J. Org. Chem. 2013; 78: 1365
  • 22 Kawazoe K, Yamamoto M, Takaishi Y, Honda G, Fujita T, Sezik E, Yesilada E. Phytochemistry 1999; 50: 493
  • 23 Shuman RF, Pines SH, Shearin WE, Czaja RF, Abramson NL, Tull R. J. Org. Chem. 1977; 42: 1914
    • 24a Imuta J, Fukuoka D, Yoshida M, Saito J, Fujita T, Tashiro T, Kawaai K, Ueda T, Kiso Y. EP 0653433, 1994
    • 24b Tsarev AA, Nikulin MV, Uborsky DV, Kulyabin PS, Borisov IS, Izmer VV, Andreev YS, Canich JA. M, Voskoboynikov AZ. Russ. Chem. Bull. 2014; 63: 684
  • 25 Sueki S, Kuninobu Y. Chem. Commun. 2015; 51: 7685
  • 26 Patureau FW, Besset T, Kuhl N, Glorius F. J. Am. Chem. Soc. 2011; 133: 2154
    • 27a Anthony JE. Angew. Chem. Int. Ed. 2008; 47: 452
    • 27b Ye Q, Chi C. Chem. Mater. 2014; 26: 4046
    • 28a Umeda N, Tsurugi H, Satoh T, Miura M. Angew. Chem. Int. Ed. 2008; 47: 4019
    • 28b Umeda N, Hirano K, Satoh T, Shibata N, Sato H, Miura M. J. Org. Chem. 2011; 76: 13
  • 29 Wu Y.-T, Huang K.-H, Shin C.-C, Wu T.-C. Chem. Eur. J. 2008; 14: 6697
  • 30 Pham MV, Cramer N. Angew. Chem. Int. Ed. 2014; 53: 3484
  • 31 Nagata T, Hirano K, Satoh T, Miura M. J. Org. Chem. 2014; 79: 8960
  • 32 Maekawa T, Segawa Y, Itami K. Chem. Sci. 2013; 4: 2369
  • 33 Zhao J, Oniwa K, Asao N, Yamamoto Y, Jin T. J. Am. Chem. Soc. 2013; 135: 10222
  • 34 Kuninobu Y, Nishina Y, Nakagawa C, Takai K. J. Am. Chem. Soc. 2006; 128: 12376
  • 35 Kuninobu Y, Seiki T, Kanamaru S, Nishina Y, Takai K. Org. Lett. 2010; 12: 5287
  • 36 Martinez R, Simon M.-O, Chevalier R, Pautigny C, Genet J.-P, Darses S. J. Am. Chem. Soc. 2009; 131: 7887
  • 37 Lee P.-S, Yoshikai N. Angew. Chem. Int. Ed. 2013; 52: 1240
  • 38 Kuninobu Y, Tatsuzaki T, Matsuki T, Takai K. J. Org. Chem. 2011; 76: 7005
  • 39 Chang N.-H, Mori H, Chen X.-C, Okuda Y, Okamoto T, Nishihara Y. Chem. Lett. 2013; 42: 1257
  • 40 Kawai H, Kobayashi Y, Oi S, Inoue Y. Chem. Commun. 2008; 1464
  • 41 Funaki K, Kawai H, Sato T, Oi S. Chem. Lett. 2011; 40: 1050
    • 42a Kitazawa K, Kochi T, Sato M, Kakiuchi F. Org. Lett. 2009; 11: 1951
    • 42b Kitazawa K, Kochi T, Nitani M, Ie Y, Aso Y, Kakiuchi F. Chem. Lett. 2011; 40: 300
    • 42c Matsumura D, Kitazawa K, Terai S, Kochi T, Ie Y, Nitani M, Aso Y, Kakiuchi F. Org. Lett. 2012; 14: 3882
    • 43a Lee JJ, Yamaguchi A, Alam MA, Yamamoto Y, Fukushima T, Kato K, Takata M, Fujita N, Aida T. Angew. Chem. Int. Ed. 2012; 51: 8490
    • 43b Togashi K, Nomura S, Yokoyama N, Yasuda T, Adachi C. J. Mater. Chem. 2012; 22: 20689
    • 43c See also ref. 27a.
  • 44 Iwasaki M, Iino S, Nishihara Y. Org. Lett. 2013; 15: 5326
  • 45 Vasu D, Yorimitsu H, Osuka A. Angew. Chem. Int. Ed. 2015; 54: 7162
  • 46 Collins KD, Honeker R, Vásquez-Céspedes S, Tang D.-TD, Glorius F. Chem. Sci. 2015; 6: 1816
  • 47 Jones BA, Ahrens MJ, Yoon M.-H, Facchetti A, Marks TJ, Wasielewski MR. Angew. Chem. Int. Ed. 2004; 43: 6363
  • 48 Hunger K, Herbst W. Ullmann’s Encyclopedia of Industrial Chemistry . Wiley-VCH; Weinheim: 2012
  • 49 Weil T, Vosch T, Hofkens J, Peneva K, Müllen K. Angew. Chem. Int. Ed. 2010; 49: 9068
  • 50 Usta H, Facchetti A, Marks TJ. Acc. Chem. Res. 2011; 44: 501
    • 51a Nakazono S, Easwaramoorthi S, Kim D, Shinokubo H, Osuka A. Org. Lett. 2009; 11: 5426
    • 51b Nakazono S, Imazaki Y, Yoo H, Yang J, Sasamori T, Tokitoh N, Cédric T, Kageyama H, Kim D, Shinokubo H, Osuka A. Chem. Eur. J. 2009; 15: 7530
  • 52 Yue W, Li Y, Jiang W, Zhen Y, Wang Z. Org. Lett. 2009; 11: 5430
  • 53 Battagliarin G, Davies M, Mackowiak S, Li C, Müllen K. ChemPhysChem 2012; 13: 923
    • 54a Teraoka T, Hiroto S, Shinokubo H. Org. Lett. 2011; 13: 2532
    • 54b Ito S, Hiroto S, Shinokubo H. Chem. Lett. 2014; 43: 1309
  • 55 Zhang J, Singh S, Hwang DK, Barlow S, Kippelen B, Marder SR. J. Mater. Chem. C 2013; 1: 5093
  • 56 Lyall CL, Shotton CC, Pérez-Salvia M, Pantoş GD, Lewis SE. Chem. Commun. 2014; 50: 13837
    • 57a Watson MD, Fechtenkötter A, Müllen K. Chem. Rev. 2001; 101: 1267
    • 57b Wu J, Pisula W, Müllen K. Chem. Rev. 2007; 107: 718
    • 57c Meng J, Shi D, Zhang G. Mod. Phys. Lett. B 2014; 28: 1430009
  • 58 Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA. Nature (London, U. K.) 2005; 438: 197
  • 59 Narita A, Wang X.-Y, Feng X, Müllen K. Chem. Soc. Rev. 2015; 44: 6616
  • 60 Coventry DN, Batsanov AS, Goeta AE, Howard JA. K, Marder TB, Perutz RN. Chem. Commun. 2005; 2172

    • For several examples of C–H borylation of polyaromatic hydrocarbons from other groups, see:
    • 61a Ozawa R, Yoza K, Kobayashi K. Chem. Lett. 2011; 40: 941
    • 61b Kimoto T, Tanaka K, Sakai Y, Ohno A, Yoza K, Kobayashi K. Org. Lett. 2009; 11: 3658
  • 62 Eliseeva MN, Scott LT. J. Am. Chem. Soc. 2012; 134: 15169
    • 63a Yamaguchi R, Hiroto S, Shinokubo H. Org. Lett. 2012; 14: 2472
    • 63b Yamaguchi R, Ito S, Lee BS, Hiroto S, Kim D, Shinokubo H. Chem. Asian J. 2013; 8: 178
    • 64a Mochida K, Kawasumi K, Segawa Y, Itami K. J. Am. Chem. Soc. 2011; 133: 10716
    • 64b Kawasumi K, Mochida K, Kajino T, Segawa Y, Itami K. Org. Lett. 2012; 14: 418
    • 64c Kawasumi K, Mochida K, Segawa Y, Itami K. Tetrahedron 2013; 69: 4371
  • 65 Zhang Q, Kawasumi K, Segawa Y, Itami K, Scott LT. J. Am. Chem. Soc. 2012; 134: 15664
  • 66 Kawasumi K, Zhang Q, Segawa Y, Scott LT, Itami K. Nat. Chem. 2013; 5: 739
  • 67 Ozaki K, Kawasumi K, Shibata M, Ito H, Itami K. Nat. Commun. 2015; 6: article No. 6251; DOI: 10.1038/ncomms7251; http://www.nature.com/ncomms/index.html

    • For a review of ladder-type molecules, see:
    • 68a Scherf U. J. Mater. Chem. 1999; 9: 1853
    • 68b Fukazawa A, Yamaguchi S. Chem. Asian J. 2009; 4: 1386
    • 68c Takimiya K, Shinamura S, Osaka I, Miyazaki E. Adv. Mater. 2011; 23: 4347
    • 68d Wu J.-S, Cheng S.-W, Cheng Y.-J, Hsu C.-S. Chem. Soc. Rev. 2015; 44: 1113
    • 69a Dubac J, Laporterie A, Manuel G. Chem. Rev. 1990; 90: 215
    • 69b Chen R.-F, Fan Q.-L, Zheng C, Huang W. Org. Lett. 2006; 8: 203
  • 70 Yamaguchi S, Xu C, Tamao K. J. Am. Chem. Soc. 2003; 125: 13662
  • 71 Ureshino T, Yoshida T, Kuninobu Y, Takai K. J. Am. Chem. Soc. 2010; 132: 14324
  • 72 Kuninobu Y, Yamauchi K, Tamura N, Seiki T, Takai K. Angew. Chem. Int. Ed. 2013; 52: 1520
  • 73 Kuninobu Y, Yoshida T, Takai K. J. Org. Chem. 2011; 76: 7370
  • 74 Kuninobu Y, Iwanaga T, Omura T, Takai K. Angew. Chem. Int. Ed. 2013; 52: 4431
  • 75 Wakaki T, Kanai M, Kuninobu Y. Org. Lett. 2015; 17: 1758
  • 76 Xiao Q, Meng X, Kanai M, Kuninobu Y. Angew. Chem. Int. Ed. 2014; 53: 3168
  • 77 Wei Y, Yoshikai N. Org. Lett. 2011; 13: 5504
  • 78 Liao Y, Peng Y, Qi H, Deng G.-J, Gong H, Li C.-J. Chem. Commun. 2015; 51: 1031
    • 79a Shimizu M, Mochida K, Hiyama T. Angew. Chem. Int. Ed. 2008; 47: 9760
    • 79b Mochida K, Shimizu M, Hiyama T. J. Am. Chem. Soc. 2009; 131: 8350
  • 80 Shintani R, Otomo H, Ota K, Hayashi T. J. Am. Chem. Soc. 2012; 134: 7305
  • 81 Vásquez-Céspedes S, Ferry A, Candish L, Glorius F. Angew. Chem. Int. Ed. 2015; 54: 5772
  • 82 Huang Y, Wu D, Huang J, Guo Q, Li J, You J. Angew. Chem. Int. Ed. 2014; 53: 12158
  • 83 Oechsle P, Paradies J. Org. Lett. 2014; 16: 4086
  • 84 Saito K, Chikkade PK, Kanai M, Kuninobu Y. Chem. Eur. J. 2015; 21: 8365
  • 85 Wu B, Santra M, Yoshikai N. Angew. Chem. Int. Ed. 2014; 53: 7543
  • 86 Unoh Y, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2013; 52: 12975
  • 87 Chen Y.-R, Duan W.-L. J. Am. Chem. Soc. 2013; 135: 16754
  • 88 Zhang X, Si W, Bao M, Asao N, Yamamoto Y, Jin T. Org. Lett. 2014; 16: 4830
  • 89 Shi Z, Ding S, Cui Y, Jiao N. Angew. Chem. Int. Ed. 2009; 48: 7895
  • 90 Iitsuka T, Hirano K, Satoh T, Miura M. Chem. Eur. J. 2014; 20: 385
  • 91 Qi Z, Yu S, Li X. J. Org. Chem. 2015; 80: 3471
  • 92 Bon JL, Feng D, Marder SR, Blakey SB. J. Org. Chem. 2014; 79: 7766
    • 93a Mitschke U, Bäuerle P. J. Mater. Chem. 2000; 10: 1471
    • 93b Kimura M, Tanaka K. Angew. Chem. Int. Ed. 2008; 47: 9768
  • 94 Zhang J, Chen Y, Chen X, Zheng X, Cao W, Chen J, Zhang M. Tetrahedron 2014; 70: 5820
  • 95 Morioka R, Hirano K, Satoh T, Miura M. Chem. Eur. J. 2014; 20: 12720
  • 96 Jayakumar J, Parthasarathy K, Chen Y.-H, Lee T.-H, Chuang S.-C, Cheng C.-H. Angew. Chem. Int. Ed. 2014; 53: 9889
    • 97a Zhao D, Kim JH, Stegemann L, Strassert CA, Glorius F. Angew. Chem. Int. Ed. 2015; 54: 4508
    • 97b Kim JH, Gensch T, Zhao D, Stegemann L, Strassert CA, Glorius F. Angew. Chem. Int. Ed. 2015; 54: 10975
    • 98a Wasielewski MR. Chem. Rev. 1992; 92: 435
    • 98b Lin VS.-Y, DiMagno SG, Therien MJ. Science (Washington, D.C.) 1994; 264: 1105
    • 98c Debreczeny MP, Svec WA, Wasielewski MR. Science (Washington, D.C.) 1996; 274: 584
    • 98d Anderson HL. Chem. Commun. 1999; 2323
    • 98e Gust D, Moore TA, Moore AL. Acc. Chem. Res. 2001; 34: 40
    • 98f Holten D, Bocian DF, Lindsey JS. Acc. Chem. Res. 2002; 35: 57
    • 99a Hata H, Shinokubo H, Osuka A. J. Am. Chem. Soc. 2005; 127: 8264
    • 99b Hiroto S, Hisaki I, Shinokubo H, Osuka A. Angew. Chem. Int. Ed. 2005; 44: 6763
    • 99c Hata H, Yamaguchi S, Mori G, Nakazono S, Katoh T, Takatsu K, Hiroto S, Shinokubo H, Osuka A. Chem. Asian J. 2007; 2: 849

    • For several reviews, see:
    • 99d Shinokubo H, Osuka A. Chem. Commun. 2009; 1011
    • 99e Shinokubo H. Proc. Jpn. Acad., Ser. B 2014; 90: 1
  • 100 Kawamata Y, Tokuji S, Yorimitsu H, Osuka A. Angew. Chem. Int. Ed. 2011; 50: 8867
  • 101 Samarat A, Kuninobu Y, Takai K. Synlett 2011; 2177
  • 102 Kawano T, Yoshizumi T, Hirano K, Satoh T, Miura M. Org. Lett. 2009; 11: 3072
  • 103 Kamiya H, Yanagisawa S, Hiroto S, Itami K, Shinokubo H. Org. Lett. 2011; 13: 6394
    • 104a Beydoun K, Boixel J, Guerchais V, Doucet H. Catal. Sci. Technol. 2012; 2: 1242
    • 104b Beydoun K, Roger J, Boixel J, Le Bozec H, Guerchais V, Doucet H. Chem. Commun. 2012; 48: 11951
  • 105 Zhang J, Kang D.-Y, Barlow S, Marder SR. J. Mater. Chem. 2012; 22: 21392

    • For further studies, see:
    • 106a Kang X, Zhang J, O’Neil D, Rojas AJ, Chen W, Szymanski P, Marder SR, El-Sayed MA. Chem. Mater. 2014; 26: 4486
    • 106b Song Y.-T, Lin P.-H, Liu C.-Y. Adv. Synth. Catal. 2014; 356: 3761
  • 107 Verbelen B, Leen V, Wang L, Boens N, Dehaen W. Chem. Commun. 2012; 48: 9129
    • 108a Luo L, Wu D, Li W, Zhang S, Ma Y, Yan S, You J. Org. Lett. 2014; 16: 6080
    • 108b Chong H, Lin H.-A, Shen M.-Y, Liu C.-Y, Zhao H, Yu H. Org. Lett. 2015; 17: 3198
  • 109 Mitamura Y, Yorimitsu H, Oshima K, Osuka A. Chem. Sci. 2011; 2: 2017
  • 110 Baggett AW, Vasiliu M, Li B, Dixon DA, Liu S.-Y. J. Am. Chem. Soc. 2015; 137: 5536
  • 111 Ito S, Tokimaru Y, Nozaki K. Angew. Chem. Int. Ed. 2015; 54: 7256
  • 112 Dröge T, Notzon A, Fröhlich R, Glorius F. Chem. Eur. J. 2011; 17: 11974
  • 113 For further examples, see: Liu T, Li D.-Q, Wang S.-Y, Hu Y.-Z, Dong X.-W, Liu X.-Y, Che C.-M. Chem. Commun. 2014; 50: 13261
  • 114 He C.-Y, Fan S, Zhang X. J. Am. Chem. Soc. 2010; 132: 12850
  • 115 Beydoun K, Zaarour M, Williams JA. G, Doucet H, Guerchais V. Chem. Commun. 2012; 48: 1260
    • 116a Mori A, Sekiguchi A, Masui K, Shimada T, Horie M, Osakada K, Kawamoto M, Ikeda T. J. Am. Chem. Soc. 2003; 125: 1700
    • 116b Masui K, Mori A, Okano K, Takamura K, Kinoshita M, Ikeda T. Org. Lett. 2004; 6: 2011
  • 117 Cho J.-Y, Tse MK, Holmes D, Maleczka Jr RE, Smith III MR. Science (Washington, D.C.) 2002; 295: 305
  • 118 See also: Finke AD, Moore JS. Org. Lett. 2008; 10: 4851