Synlett 2015; 26(20): 2763-2779
DOI: 10.1055/s-0035-1560182
account
© Georg Thieme Verlag Stuttgart · New York

Imidazolium and Benzimidazolium Salts: A Veritable Playground for Organic and Supramolecular Chemists

Vincent Gauchot
Département de Chimie, Université de Montréal, CP 6128 Succursale Centre Ville, Montréal, Québec, H3C3J7,, Canada   Email: ar.schmitzer@umontreal.ca
,
Julien Gravel
Département de Chimie, Université de Montréal, CP 6128 Succursale Centre Ville, Montréal, Québec, H3C3J7,, Canada   Email: ar.schmitzer@umontreal.ca
,
Marc Vidal
Département de Chimie, Université de Montréal, CP 6128 Succursale Centre Ville, Montréal, Québec, H3C3J7,, Canada   Email: ar.schmitzer@umontreal.ca
,
Mathieu Charbonneau
Département de Chimie, Université de Montréal, CP 6128 Succursale Centre Ville, Montréal, Québec, H3C3J7,, Canada   Email: ar.schmitzer@umontreal.ca
,
Vanessa Kairouz
Département de Chimie, Université de Montréal, CP 6128 Succursale Centre Ville, Montréal, Québec, H3C3J7,, Canada   Email: ar.schmitzer@umontreal.ca
,
Andreea R. Schmitzer*
Département de Chimie, Université de Montréal, CP 6128 Succursale Centre Ville, Montréal, Québec, H3C3J7,, Canada   Email: ar.schmitzer@umontreal.ca
› Author Affiliations
Further Information

Publication History

Received: 29 May 2015

Accepted after revision: 23 July 2015

Publication Date:
07 September 2015 (online)


Abstract

Over the past few years, we have undertaken a multidisciplinary research effort to show that it is possible not only to study imidazolium cations at the molecular level, but also to tune the macroscopic properties of the supramolecular systems they form. The study of functional imidazolium-based supramolecular architectures gives rise to emerging opportunities in chemistry, and bridges the gap between organic and supramolecular systems in an effort to fully understand the driving forces behind the assembly of these units in different hierarchies. Imidazolium and benzimidazolium cations are important building blocks common to the different projects described in this account, where we show and discuss how our research group has exploited imidazolium salts and their supramolecular assistance in catalysis, and more particularly, what we learned from each step and how this information guided us in the design of new strategies.

1 Introduction

2 Development of a One-Pot, Two-Step Biphasic Catalytic Sequence

3 Incorporation of Imidazolium Cations into Different Catalytic Scaffolds for Reactions Performed in Neat Water

3.1 β-Cyclodextrin-Functionalized Imidazolium Salts: A Bimodal Ligand Precursor for Aqueous Catalysis

3.2 Functionalized Benzimidazolium Salts as N-Heterocyclic Carbene Precursors

4 Chiral Imidazolium-Functionalized Catalysts

4.1 Early Studies

4.2 Optimization Studies

4.3 Recyclability

5 Imidazolium Cations Bearing Chiral Catalytic Anions

5.1 Aldol Reaction

5.2 Michael Addition

6 Development of Supramolecular Bio-Hybrid Catalysts

6.1 First Generation Catalyst

6.2 Second Generation Catalyst

6.3 Third Generation Catalyst

7 Conclusion

 
  • References

  • 1 Parvulescu VI, Hardacre C. Chem. Rev. 2007; 107: 2615
  • 2 Zhang Q, Zhang S, Deng Y. Green Chem. 2011; 13: 2619
  • 3 Qiao Y, Headley A. Catalysts 2013; 3: 709
  • 4 Deetlefs M, Seddon KR. Green Chem. 2003; 5: 181
  • 5 Kirchhecker S, Antonietti M, Esposito D. Green Chem. 2014; 16: 3705
  • 6 Esposito D, Kirchhecker S, Antonietti M. Chem. Eur. J. 2013; 19: 15097
  • 7 Mathews CJ, Smith PJ, Welton T. Chem. Commun. 2000; 1249
  • 8 Weingartner H, Cabrele C, Herrmann C. Phys. Chem. Chem. Phys. 2012; 14: 415
  • 9 Naushad M, Alothman ZA, Khan AB, Ali M. Int. J. Biol. Macromol. 2012; 51: 555
  • 10 de Gonzalo G, Lavandera I, Durchschein K, Wurm D, Faber K, Kroutil W. Tetrahedron: Asymmetry 2007; 18: 2541
  • 11 Gauchot V, Kroutil W, Schmitzer AR. Chem. Eur. J. 2010; 16: 6748
  • 12 Xu L, Chen W, Xiao J. Organometallics 2000; 19: 1123
  • 13 Cano R, Ramón DJ, Yus M. Tetrahedron 2011; 67: 5432
  • 14 Turkmen H, Can R, Cetinkaya B. Dalton Trans. 2009; 7039
  • 15 Enders D, Niemeier O, Henseler A. Chem. Rev. 2007; 107: 5606
  • 16 Amyes TL, Diver ST, Richard JP, Rivas FM, Toth K. J. Am. Chem. Soc. 2004; 126: 4366
  • 17 Leclercq L, Schmitzer AR. J. Phys. Org. Chem. 2009; 22: 91
  • 18 Kairouz V, Schmitzer AR. Green Chem. 2014; 16: 3117
  • 19 Yuan D, Teng Q, Huynh HV. Organometallics 2014; 33: 1794
  • 20 Charbonneau M, Addoumieh G, Oguadinma P, Schmitzer AR. Organometallics 2014; 33: 6544
  • 21 Regitz M. Angew. Chem. Int. Ed. 1996; 35: 725
  • 22 Weskamp T, Böhm VP. W, Herrmann WA. J. Organomet. Chem. 2000; 600: 12
  • 23 Gadenne B, Hesemann P, Moreau JJ. E. Tetrahedron: Asymmetry 2005; 16: 2001
  • 24 Vidal M, Schmitzer AR. Organometallics 2014; 33: 3328
  • 25 Bica K, Gaertner P. Eur. J. Org. Chem. 2008; 3235
  • 26 Hu S, Jiang T, Zhang Z, Zhu A, Han B, Song J, Xie Y, Li W. Tetrahedron Lett. 2007; 48: 5613
  • 27 Qian Y, Xiao S, Liu L, Wang Y. Tetrahedron: Asymmetry 2008; 19: 1515
  • 28 List B. Chem. Commun. 2006; 819
  • 29 Gauchot V, Schmitzer AR. J. Org. Chem. 2012; 77: 4917
  • 30 Gauchot V, Gravel J, Schmitzer AR. Eur. J. Org. Chem. 2012; 6280
  • 31 Thomas CM, Ward TR. Chem. Soc. Rev. 2005; 34: 337
  • 32 Letondor C, Pordea A, Humbert N, Ivanova A, Mazurek S, Novic M, Ward TR. J. Am. Chem. Soc. 2006; 128: 8320
  • 33 Pierron J, Malan C, Creus M, Gradinaru J, Hafner I, Ivanova A, Sardo A, Ward TR. Angew. Chem. Int. Ed. 2008; 47: 701
  • 34 Gauchot V, Branca M, Schmitzer AR. Chem. Eur. J. 2014; 20: 1530
  • 35 Gauchot V, Schmitzer AR. J. Org. Chem. 2014; 79: 2694