Synthesis 2015; 47(15): 2199-2206
DOI: 10.1055/s-0034-1380718
special topic
© Georg Thieme Verlag Stuttgart · New York

Primary Amine–2-Aminopyrimidine Chiral Organocatalysts for the Enantioselective Conjugate Addition of Branched Aldehydes to Maleimides

Pascuala Vízcaíno-Milla
a  Departamento de Química Orgánica and Centro de Innovación, en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain   Email: cnajera@ua.es
,
José M. Sansano
a  Departamento de Química Orgánica and Centro de Innovación, en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain   Email: cnajera@ua.es
,
Carmen Nájera*
a  Departamento de Química Orgánica and Centro de Innovación, en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain   Email: cnajera@ua.es
,
Béla Fiser
b  Departmento de Química Orgánica I, Facultad de Química, Universidad del País Vasco, Apdo. 1072, 20080 San Sebastián, Spain   Email: enrique.gomez@ehu.es
,
Enrique Gómez-Bengoa*
b  Departmento de Química Orgánica I, Facultad de Química, Universidad del País Vasco, Apdo. 1072, 20080 San Sebastián, Spain   Email: enrique.gomez@ehu.es
› Author Affiliations
Further Information

Publication History

Received: 26 March 2015

Accepted after revision: 13 April 2015

Publication Date:
26 May 2015 (online)

Abstract

Chiral primary amines containing the (R,R)- and (S,S)-trans-cyclohexane-1,2-diamine scaffold and a pyrimidin-2-yl unit are synthesized and used as general organocatalysts for the Michael reaction of α-branched aldehydes to maleimides. The reaction takes place with 10 mol% organocatalyst loading and hexanedioic acid as cocatalyst in aqueous N,N-dimethylformamide at 10 °C affording the corresponding succinimides in good yields and enantioselectivities. DFT calculations support the stereochemical results and the role played by the solvents.

Supporting Information

 
  • References

  • 1 List B, Lerner RA, Barbas III CF. J. Am. Chem. Soc. 2000; 122: 2395
  • 2 Ahrendt KA, Borthes CJ, MacMillan DW. C. J. Am. Chem. Soc. 2000; 122: 4243
    • 3a Wagner J, Lerner RA, Barbas III CF. Science (Washington, D.C.) 1995; 270: 1797
    • 3b Barbas III CF, Heine A, Zhong G, Hoffmann T, Gramatikowa S, Bjornestedt R, List B, Anderson J, Stura EA, Wilson EA, Lerner RA. Science (Washington, D.C.) 1997; 278: 2085
    • 3c Zhong G, Hoffmann T, Lerner RA, Danishefsky F, Barbas III CF. J. Am. Chem. Soc. 1997; 119: 8131
    • 3d Barbas III CF. Angew. Chem. Int. Ed. 2008; 47: 42

      For recent reviews, see:
    • 4a Desmarchelier A, Coeffard V, Moreau X, Greck C. Tetrahedron 2014; 70: 2491
    • 4b Tsakos M, Kokotos CG. Tetrahedron 2013; 69: 10199
    • 4c Serdyuk OV, Heckel CM, Tsogoeva SB. Org. Biomol. Chem. 2013; 11: 7051
  • 5 Sánchez D, Bastida D, Burés J, Isart C, Pineda O, Vilarrasa J. Org. Lett. 2012; 14: 536
  • 6 Kempf B, Hampel N, Ofial AR, Mayr H. Chem. Eur. J. 2003; 9: 2209
  • 8 Sigman MS, Jacobsen EN. J. Am. Chem. Soc. 1998; 120: 4901
  • 9 Schreiner PR, Wittkopp A. Org. Lett. 2002; 4: 217
  • 10 Okino T, Hoashi Y, Takemoto Y. J. Am. Chem. Soc. 2003; 125: 12672
  • 11 Chauhan P, Kaur J, Chimni SS. Chem. Asian J. 2013; 8: 328
  • 12 Kokotos CG. Org. Lett. 2013; 15: 2406
    • 13a Yu F, Yin Z, Huang H, Ye T, Liang X, Xe J. Org. Biomol. Chem. 2010; 8: 4767
    • 13b Bai J.-F, Peng L, Wang L.-l, Wang L.-X, Xu X.-Y. Tetrahedron 2010; 66: 8928
  • 14 Ma Z.-W, Liu Y.-X, Li PL, Ren H, Zhu Y, Tao J.-C. Tetrahedron: Asymmetry 2011; 22: 1740
    • 15a Ávila A, Chinchilla R, Nájera C. Tetrahedron: Asymmetry 2012; 23: 1625
    • 15b Ávila A, Chinchilla R, Gómez-Bengoa E, Nájera C. Eur. J. Org. Chem. 2013; 5085
  • 16 Ávila A, Chinchilla R, Gómez-Bengoa E, Nájera C. Tetrahedron: Asymmetry 2013; 24: 1531
  • 17 Flores-Ferrándiz J, Chinchilla R. Tetrahedron: Asymmetry 2014; 25: 1091
    • 18a Almaşi D, Alonso DA, Gómez-Bengoa E, Nájera C. J. Org. Chem. 2009; 74: 6163
    • 18b Gómez-Torres E, Alonso DA, Gómez-Bengoa E, Nájera C. Org. Lett. 2011; 13: 6106
    • 18c Gómez-Torres E, Alonso DA, Gómez-Bengoa E, Nájera C. Eur. J. Org. Chem. 2013; 1434
    • 18d Trillo P, Baeza A, Nájera C. Synthesis 2014; 46: 3399
  • 19 Vizcaíno-Milla P, Sansano JM, Nájera C, Fiser B, Gómez-Bengoa E. Eur. J. Org. Chem. 2015; 2614
    • 20a Seebach D, Golinski J. Helv. Chim. Acta 1981; 64: 1413
    • 20b Seebach D, Beck AK, Golinski J, Hay JN, Laube T. Helv. Chim. Acta 1985; 68: 162
    • 21a Lee C, Yang W, Parr RG. Phys. Rev. B 1988; 37: 785
    • 21b Becke AD. J. Chem. Phys. 1993; 98: 5648
    • 21c Kohn W, Becke AD, Parr RG. J. Phys. Chem. 1996; 100: 12974
  • 22 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Menucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision D.01. Gaussian Inc; Wallingford (CT, USA): 2013
  • 23 Zhao Y, Truhlar DG. Theor. Chem. Acc. 2008; 120: 215
    • 24a Cancès E, Mennucci B, Tomasi J. J. Chem. Phys. 1997; 107: 3032
    • 24b Tomasi J, Mennucci B, Cancès E. J. Mol. Struct.: THEOCHEM 1999; 464: 211
  • 25 González C, Schlegel HB. J. Phys. Chem. 1990; 94: 5523