Synthesis 2015; 47(15): 2256-2264
DOI: 10.1055/s-0034-1380702
special topic
© Georg Thieme Verlag Stuttgart · New York

Cyclic Model for the Asymmetric Conjugate Addition of Organolithiums with Enoates

Katsumi Nishimura
a  Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
,
Naoshi Fukuyama
a  Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
,
Mitsuaki Yamashita
a  Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
,
Takaaki Sumiyoshi
a  Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
,
Yasutomo Yamamoto
b  Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kodo, Kyotanabe 610-0395, Japan   Email: ktomioka@dwc.doshisha.ac.jp
,
Ken-ichi Yamada
a  Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
,
Kiyoshi Tomioka*
a  Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
b  Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kodo, Kyotanabe 610-0395, Japan   Email: ktomioka@dwc.doshisha.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 14 March 2015

Accepted after revision: 13 April 2015

Publication Date:
19 May 2015 (online)

Abstract

The chiral diether ligand controlled asymmetric conjugate addition of organolithiums to nona-2,7-dienedioates preferentially proceeds via the s-cis conformation with coordination of the carbonyl oxygen atom to the lithium to give a lithium E-enolate intermediate. Subsequent intramolecular conjugate addition of the enolate also proceeds via a cyclic transition state involving the lithium and the s-cis-enoate, resulting in trans,trans-trisubstituted cyclohexanes with high enantiomeric excesses and yields.

Supporting Information

 
  • References

    • 2a Asao N, Uyehara T, Yamamoto Y. Tetrahedron 1990; 46: 4563
    • 2b Suzuki I, Kin H, Yamamoto Y. J. Am. Chem. Soc. 1993; 115: 10139
    • 2c Shida N, Kabuto C, Niwa T, Ebata T, Yamamoto Y. J. Org. Chem. 1994; 59: 4068
    • 2d Börner C, König WA, Woodward S. Tetrahedron Lett. 2001; 42: 327
    • 2e Cardillo G, Gentilucci L, Gianotti M, Tolomelli A. Org. Lett. 2001; 3: 1165
    • 2f Börner C, Dennis MR, Sinn E, Woodward S. Eur. J. Org. Chem. 2001; 2435
    • 2g Nishimura K, Tomioka K. J. Org. Chem. 2002; 67: 431
    • 2h Dambacher J, Anness R, Pollock P, Bergdahl M. Tetrahedron 2004; 60: 2097
    • 2i Davies SG, Hermann GJ, Sweet MJ, Smith AD. Chem. Commun. 2004; 1128
    • 2j Beddow JE, Davies SG, Ling KB, Roberts PM, Russell AJ, Smith AD, Thomson JE. Org. Biomol. Chem. 2007; 5: 2812
    • 2k Davies SG, Foster EM, McIntosh CR, Roberts PM, Rosser TE, Smith AD, Thomson JE. Tetrahedron: Asymmetry 2011; 22: 1035
    • 3a Tomioka K, Shindo M, Koga K. J. Am. Chem. Soc. 1989; 111: 8266
    • 3b Tomioka K, Shioya Y, Nagaoka Y, Yamada K. J. Org. Chem. 2001; 66: 7051 ; and references cited therein

      For C-nucleophiles, see:
    • 4a Asano Y, Iida A, Tomioka K. Tetrahedron Lett. 1997; 38: 8973
    • 4b Asano Y, Yamashita M, Nagai K, Kuriyama M, Yamada K, Tomioka K. Tetrahedron Lett. 2001; 42: 8493 ; and references cited therein

      For N-nucleophiles, see:
    • 5a Doi H, Sakai T, Iguchi M, Yamada K, Tomioka K. J. Am. Chem. Soc. 2003; 125: 2886
    • 5b Sakai T, Doi H, Tomioka K. Tetrahedron 2006; 62: 8351 ; and references cited therein

      For S-nucleophiles, see ref. 2g and:
    • 6a Nishimura K, Ono M, Nagaoka Y, Tomioka K. J. Am. Chem. Soc. 1997; 119: 12974
    • 6b Nishimura K, Ono M, Nagaoka Y, Tomioka K. Angew. Chem. Int. Ed. 2001; 40: 440

    • 7a Yamashita M, Yamada K, Tomioka K. J. Am. Chem. Soc. 2004; 126: 1954
    • 7b Valleix F, Nagai K, Soeta T, Kuriyama M, Yamada K, Tomioka K. Tetrahedron 2005; 61: 7420; and references cited therein
  • 8 Of course, the sp3 character of lithium and the Li–R bond constitute a destroying factor of perfect C2 -symmetry.
    • 9a Yamamoto Y, Yasuda Y, Oulyadi H, Maddaluno J, Tomioka K. Tetrahedron 2010; 66: 2470
    • 9b Yamamoto Y, Nasu H, Tomioka K. Tetrahedron 2013; 69: 3836
  • 10 The ester substituent R2 of the enoate in Scheme 1 affects the stereoselectivity. In the asymmetric conjugate addition of the lithium amide where R1 = N(Bn)TMS, the ee of the reaction of tert-butyl crotonate was 97%, whereas that of methyl crotonate was 85% (see ref. 5a). These results indicate that an enoate with a bulky ester substituent prefers the coordination to lithium as shown in X.
  • 11 Corey EJ, Peterson RT. Tetrahedron Lett. 1985; 26: 5025
  • 12 Uchiyama M, Nakamura S, Furuyama T, Nakamura E, Morokuma K. J. Am. Chem. Soc. 2007; 129: 13360

    • For diastereoselective conjugate addition cascades of dienedioates, see:
    • 13a Saito S, Hirohara Y, Narahara O, Moriwake T. J. Am. Chem. Soc. 1989; 111: 4533
    • 13b Saito S, Hara T, Naka K, Hayashi T, Moriwake T. Synlett 1992; 241
    • 13c Klimko PG, Singleton DA. J. Org. Chem. 1992; 57: 1733
    • 13d Uyehara T, Shida N, Yamamoto Y. J. Org. Chem. 1992; 57: 3139
    • 13e Shida N, Uyehara T, Yamamoto Y. J. Org. Chem. 1992; 57: 5049
    • 13f Yoshii E, Hori K, Nomura K, Yamaguchi K. Synlett 1995; 568
    • 13g Urones JG, Garrido NM, Díez D, Dominguez SH, Davies SG. Tetrahedron: Asymmetry 1997; 8: 2683
    • 13h Davies G, Díez D, Dominguez SH, Garrido NM, Kruchinin D, Price PD, Smith AD. Org. Biomol. Chem. 2005; 3: 1284

      For our other approaches to conjugate addition triggered cascade reactions, see:
    • 14a Nagaoka Y, Tomioka K. Org. Lett. 1999; 1: 1467
    • 14b Ono M, Nishimura K, Tsubouchi H, Nagaoka Y, Tomioka K. J. Org. Chem. 2001; 66: 8199
    • 14c Inoue H, Nagaoka Y, Tomioka K. J. Org. Chem. 2002; 67: 5864
    • 14d Yamamoto Y, Yasuda Y, Nasu H, Tomioka K. Org. Lett. 2009; 11: 2007
    • 14e Yamada K, Konishi T, Nakano M, Fujii S, Cadou R, Yamamoto Y, Tomioka K. J. Org. Chem. 2012; 77: 5775
    • 14f Harada S, Sakai T, Takasu K, Yamada K, Yamamoto Y, Tomioka K. J. Org. Chem. 2012; 77: 7212
    • 14g Harada S, Sakai T, Takasu K, Yamada K, Yamamoto Y, Tomioka K. Tetrahedron 2013; 69: 3264; and references cited therein

      For our preliminary reports, see:
    • 15a Yamada K, Yamashita M, Sumiyoshi T, Nishimura K, Tomioka K. Org. Lett. 2009; 11: 1631
    • 15b Nishimura K, Fukuyama N, Yasuhara T, Yamashita M, Sumiyoshi T, Yamamoto Y, Yamada K, Tomioka K. Tetrahedron 2015; in press, doi: 10.1016/j.tet.2015.03.014
  • 16 The inverse addition (adding PhLi to a solution of 6b) significantly prevented the formation of 10a (8%) and improved the yield of tt-7a and tc-7a to 52% and 5% yield, respectively.
  • 17 Yasuhara T, Nishimura K, Yamashita M, Fukuyama N, Yamada K, Muraoka O, Tomioka K. Org. Lett. 2003; 5: 1123
    • 18a Ireland RE, Mueller RH, Willard AK. J. Am. Chem. Soc. 1976; 98: 2868
    • 18b Heathcock CH, Buse CT, Kleschick WA, Pirrung MC, Sohn JE, Lampe J. J. Org. Chem. 1980; 45: 1066
  • 19 Shindo M, Koga K, Tomioka K. J. Org. Chem. 1998; 63: 9351
  • 20 Randl S, Connon SJ, Blechert S. Chem. Commun. 2001; 1796