Synthesis 2015; 47(16): 2347-2366
DOI: 10.1055/s-0034-1380435
short review
© Georg Thieme Verlag Stuttgart · New York

Selective C–Si Bond Formation through C–H Functionalization

Ritika Sharma
Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India   Email: upendra@ihbt.res.in
,
Rakesh Kumar
Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India   Email: upendra@ihbt.res.in
,
Inder Kumar
Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India   Email: upendra@ihbt.res.in
,
Bikram Singh
Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India   Email: upendra@ihbt.res.in
,
Upendra Sharma*
Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India   Email: upendra@ihbt.res.in
› Author Affiliations
Further Information

Publication History

Received: 09 April 2015

Accepted after revision: 29 May 2015

Publication Date:
09 July 2015 (online)


Abstract

Silylation of hydrocarbons is one of the most important transformations due to the diverse application of organosilanes. Continuous progress is being made in organosilane synthesis particularly through direct C–H activation/functionalization. This minireview compiles various processes reported for C–Si bond formation from 2000–2014, through C–H activation/functionalization (proximal and remote) and metal-free approaches.

1 Introduction

2 C–Si Bond Formation through C–H Activation in Intermolecular Fashion

2.1 C–Si Bond Formation through Direct C(sp2)–H Activation

2.2 C–Si Bond Formation through Directing Group Assisted C(sp2)–H Activation

2.3 C–Si Bond Formation through sp3 C–H Activation

3 C–Si Bond Formation through Proximal C–H Activation/Functionalization in Intramolecular Fashion

3.1 Intramolecular C–Si Bond Formation through C(sp2)–H Activation

3.2 Intramolecular C–Si Bond Formation through C(sp3)–H Activation

4 Siloles Synthesis through Heteroannulation

5 C–Si Bond Formation through Remote C–H Activation

6 C–Si Bond Formation through C–O Bond Cleavage

7 Metal-Free Methods for C–Si Bond Formation

8 Summary and Outlook

 
  • References

    • 1a Bains W, Tacke R. Curr. Opin. Drug Discovery Dev. 2003; 6: 526
    • 1b Showell GA, Mills JS. Drug Discovery Today 2003; 551
    • 1c Wang J, Ma C, Wu Y, Lamb RA, Pinto LH, DeGrado WF. J. Am. Chem. Soc. 2011; 133: 13844
    • 3a Panek M, Masse CE. Chem. Rev. 1995; 95: 1293
    • 3b Langkopf E, Schinzer D. Chem. Rev. 1995; 95: 1375
    • 3c Fleming I, Barbero A, Walter D. Chem. Rev. 1997; 97: 2063
    • 4a Waterman R, Hayes PG, Tilley TD. Acc. Chem. Res. 2007; 40: 712
    • 4b Blom B, Stoelzel M, Driess M. Chem. Eur. J. 2013; 19: 40
    • 4c Gallego D, Brück A, Irran E, Meier F, Kaupp M, Driess M, Hartwig JF. J. Am. Chem. Soc. 2013; 135: 15617
    • 5a Li L, Zhang Y, Gao L, Song Z. Tetrahedron Lett. 2015; 56: 1466
    • 5b Denmark SE, Sweis RF. Organosilicon Compounds in Cross-Coupling Reactions . In Metal-Catalyzed Cross-Coupling Reactions . Vol. 1. de Meijere A, Diederich F. Chap. Wiley-VCH; Weinheim: 2004
    • 5c Denmark SE, Regens CS. Acc. Chem. Res. 2008; 41: 1486
    • 5d Braunstein P, Knorr M. J. Organomet. Chem. 1995; 500: 21
  • 8 Marciniec B. Comprehensive Handbook of Hydrosilylation . Pergamon; New York: 1992
    • 9a Barry AJ. US 2,499,561, 1950
    • 9b Barry AJ. US 2,626,269, 1953
    • 9c Barry AJ, Gilkey JW, Hook DE. Metal-Organic Compounds . ACS Advances in Chemistry Series 23; Washington: 1959
  • 11 Sakakura T, Tokunaga Y, Sodeyama T, Tanaka M. Chem. Lett. 1987; 2375
  • 12 Ezbiansky K, Djurovich PI, Laforest M, Sinning DJ, Zayes R, Berry DH. Organometallics 1998; 17: 1455
  • 13 Ishiyama T, Sato K, Nishio Y, Miyaura N. Angew. Chem. Int. Ed. 2003; 42: 5346
  • 14 Ishiyama T, Sato K, Nishio Y, Saiki T, Miyaura N. Chem. Commun. 2005; 5065
  • 15 Saiki T, Nishio Y, Ishiyama T, Miyaura N. Organometallics 2006; 25: 6068
  • 16 Tsukada N, Hartwig JF. J. Am. Chem. Soc. 2005; 127: 5022
  • 17 Klare HF. T, Oestreich M, Ito J, Nishiyama H, Ohki Y, Tatsumi K. J. Am. Chem. Soc. 2011; 133: 3312
  • 18 Murai M, Takami K, Takai K. Chem. Eur. J. 2015; 21: 4566
  • 19 Sasaki M, Kondo Y. Org. Lett. 2015; 17: 848
  • 20 Kakiuchi F, Matsumoto M, Sonoda M, Fukuyama T, Chatani N, Murai S, Furukawa N, Seki Y. Chem. Lett. 2000; 750
  • 21 Kakiuchi F, Igi K, Matsumoto M, Chatani N, Murai S. Chem. Lett. 2001; 422
  • 22 Kakiuchi F, Igi K, Matsumoto M, Hayamizu T, Chatani N, Murai S. Chem. Lett. 2002; 396
  • 23 Kakiuchi F, Matsumoto M, Tsuchiya K, Igi K, Hayamizu T, Chatani N, Murai S. J. Organomet. Chem. 2003; 686: 134
  • 24 Tobisu M, Ano Y, Chatani N. Chem. Asian J. 2008; 3: 1585
  • 25 Ihara H, Suginome M. J. Am. Chem. Soc. 2009; 131: 7502
  • 26 Simmons EM, Hartwig JF. J. Am. Chem. Soc. 2010; 132: 17092
  • 27 Li Q, Driess M, Hartwig JF. Angew. Chem. Int. Ed. 2014; 53: 8471
  • 28 Choi G, Tsurugi H, Mashima K. J. Am. Chem. Soc. 2013; 135: 13149
  • 29 Kanyiva KS, Kuninobu Y, Kanai M. Org. Lett. 2014; 16: 1968
  • 30 Xiao Q, Meng X, Kanai M, Kuninobu Y. Angew. Chem. Int. Ed. 2014; 53: 3168
  • 31 Hua Y, Asgari P, Dakarapu US, Jeon J. Chem. Commun. 2015; 51: 3778
  • 32 Kakiuchi F, Tsuchiya K, Matsumoto M, Mizushima E, Chatani N. J. Am. Chem. Soc. 2004; 126: 12792
  • 33 Mita T, Michigami K, Sato Y. Org. Lett. 2012; 14: 3462
  • 34 Mita T, Michigami K, Sato Y. Chem. Asian J. 2013; 8: 2970
  • 35 Li B, Driess M, Hartwig JF. Nature (London) 2014; 483: 70
  • 36 Li B, Driess M, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 6586
    • 37a Yamaguchi S, Tamao K. J. Organomet. Chem. 2002; 653: 223
    • 37b Hissler M, Dyer PW, Réau R. Coord. Chem. Rev. 2003; 244: 1
    • 37c Yamaguchi S, Xu C, Okamoto T. Pure Appl. Chem. 2006; 78: 721
    • 37d Corey JY. Adv. Organomet. Chem. 2011; 59: 181
  • 38 Corey JY. Synthesis of Siloles (and Germoles) that Exhibit the AIE Effect. In Aggregation-Induced Emission: Fundamentals. Qin A, Tang BZ. Wiley; Chichester: 2013. Chap. 1
  • 39 Ureshino T, Takuya T, Kuninobu Y, Takai K. J. Am. Chem. Soc. 2010; 132: 14324
  • 40 Kuninobu Y, Yamauchi K, Tamura N, Seiki T, Takai K. Angew. Chem. Int. Ed. 2013; 52: 1520
  • 41 Kuznetsov A, Gevorgyan V. Org. Lett. 2012; 14: 914
  • 42 Kuznetsov A, Onishi Y, Inamoto Y, Gevorgyan V. Org. Lett. 2013; 15: 2498
  • 43 Kuninobu Y, Nakahara T, Takeshima H, Takai K. Org. Lett. 2013; 15: 426
    • 44a Tobisu M, Onoe M, Kita Y, Chatani N. J. Am. Chem. Soc. 2009; 131: 7506
    • 44b Onoe M, Baba K, Kim Y, Kita Y, Tobisu M, Chatani N. J. Am. Chem. Soc. 2012; 134: 19477
  • 45 Liang Y, Zhang S, Xi Z. J. Am. Chem. Soc. 2011; 133: 9204
  • 46 Liang Y, Geng W, Wei J, Xi Z. Angew. Chem. Int. Ed. 2012; 51: 1934
  • 47 Cheng C, Hartwig JF. Science (Washington, D.C.) 2014; 343: 853
  • 48 Cheng C, Hartwig JF. J. Am. Chem. Soc. 2014; 136: 12064
  • 49 Cheng C, Hartwig JF. J. Am. Chem. Soc. 2015; 137: 592
  • 50 Zarate C, Martin R. J. Am. Chem. Soc. 2014; 136: 2236
  • 51 Furukawa S, Kobayashi J, Kawashima T. J. Am. Chem. Soc. 2009; 131: 14192
  • 52 Furukawa S, Kobayashi J, Kawashima T. Dalton Trans. 2010; 39: 9329
  • 53 Curless LD, Ingleson MJ. Organometallics 2014; 33: 7241
  • 54 O’Brien JM, Hoveyda AH. J. Am. Chem. Soc. 2011; 133: 7712
  • 55 Ito H, Horita Y, Yamamoto E. Chem. Commun. 2012; 48: 8006
    • 56a Ohmura T, Suginome M. Bull. Chem. Soc. Jpn. 2009; 82: 29
    • 56b Beletskaya I, Moberg C. Chem. Rev. 1999; 99: 3435
  • 57 Wang L, Zhu H, Guo S, Cheng J, Yu J.-T. Chem. Commun. 2014; 50: 10864
  • 58 Gandhamsetty N, Joung S, Park S.-W, Park S, Chang S. J. Am. Chem. Soc. 2014; 136: 16780
  • 59 During the preparation of this review, an excellent review on the same topic appeared in the literature, see: Cheng C, Hartwig JF. Chem. Rev. 2015; DOI: 10.1021/cr5006414