Synthesis 2015; 47(19): 2931-2936
DOI: 10.1055/s-0034-1380418
special topic
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Allylic Amination of Homoallylic Alcohols with Amines via Carbon–Carbon Bond Cleavage

Gui-Jun Sun
a  College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou, Fujian 350108, P. R. of China
b  Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, ChineseAcademy of Sciences, Fuzhou, Fujian 350002, P. R. of China   Email: kangq@fjirsm.ac.cn
,
Yong Wang
b  Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, ChineseAcademy of Sciences, Fuzhou, Fujian 350002, P. R. of China   Email: kangq@fjirsm.ac.cn
,
Qiang Kang*
b  Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, ChineseAcademy of Sciences, Fuzhou, Fujian 350002, P. R. of China   Email: kangq@fjirsm.ac.cn
› Author Affiliations
Further Information

Publication History

Received: 22 March 2015

Accepted after revision: 13 April 2015

Publication Date:
26 May 2015 (online)

Abstract

An efficient approach for palladium(II) acetate catalyzed allylic amination of homoallylic alcohols with various amines via sequential retro-allylation and amination was developed, which afforded the corresponding allylic amines in up to 98% yield.

Supporting Information

 
  • References


    • For recent reviews, see:
    • 1a Jones WD. Nature 1993; 364: 676
    • 1b Rybtchinski B, Milstein D. Angew. Chem. Int. Ed. 1999; 38: 870
    • 1c van der Boom ME, Milstein D. Chem. Rev. 2003; 103: 1759
    • 1d Jun CH. Chem. Soc. Rev. 2004; 33: 610
    • 1e Necas D, Kotora M. Curr. Org. Chem. 2007; 11: 1566
    • 1f Seiser T, Cramer N. Org. Biomol. Chem. 2009; 7: 2835
    • 1g Bonesi SM, Fagnoni M. Chem. Eur. J. 2010; 16: 13572
    • 1h Murakami M, Matsuda T. Chem. Commun. 2011; 47: 1100
    • 1i Aïssa C. Synthesis 2011; 3389
    • 1j Dong G. Synlett 2013; 24: 1
    • 1k Dermenci A, Coe JW, Dong G. Org. Chem. Front. 2014; 1: 567
    • 1l Liu H, Feng MH, Jiang XF. Chem. Asian J. 2014; 9: 3360
    • 1m Chen F, Wang T, Jiao N. Chem. Rev. 2014; 114: 8613
    • 1n Marek I, Masarwa A, Delaye P.-O, Leibeling M. Angew. Chem. Int. Ed. 2015; 54: 414
    • 2a Chow H.-F, Wan C.-W, Low K.-H, Yeung Y.-Y. J. Org. Chem. 2001; 66: 1910
    • 2b Nishimura T, Araki H, Maeda Y, Uemura S. Org. Lett. 2003; 5: 2997
    • 3a Terao Y, Wakui H, Satoh T, Miura M, Nomura M. J. Am. Chem. Soc. 2001; 123: 10407
    • 3b Terao Y, Wakui H, Nomoto M, Satoh T, Miura M, Nomura M. J. Org. Chem. 2003; 68: 5236
    • 4a Yorimitsu H, Oshima K. Bull. Chem. Soc. Jpn. 2009; 82: 778
    • 4b Ruhland K. Eur. J. Org. Chem. 2012; 2683
  • 5 Kondo T, Kodoi K, Nishinaga E, Okada T, Morisaki Y, Watanabe Y, Mitsudo T. J. Am. Chem. Soc. 1998; 120: 5587
    • 6a Hayashi S, Hirano K, Yorimitsu H, Oshima K. J. Am. Chem. Soc. 2006; 128: 2210
    • 6b Iwasaki M, Hayashi S, Hirano K, Yorimitsu H, Oshima K. J. Am. Chem. Soc. 2007; 129: 4463
    • 6c Iwasaki K, Hayashi S, Hirano K, Yorimitsu H, Oshima K. Tetrahedron 2007; 63: 5200
    • 6d Iwasaki M, Yorimitsu H, Oshima K. Bull. Chem. Soc. Jpn. 2009; 82: 249
    • 6e Hayashi S, Hirano K, Yorimitsu H, Oshima K. J. Am. Chem. Soc. 2007; 129: 12650
    • 6f Wakabayashi R, Fujino D, Hayashi S, Yorimitsu H, Oshima K. J. Org. Chem. 2010; 75: 4337
  • 7 Sumida Y, Hayashi S, Hirano K, Yorimitsu H, Oshima K. Org. Lett. 2008; 10: 1629
    • 8a Takada Y, Hayashi S, Hirano K, Yorimitsu H, Oshima K. Org. Lett. 2006; 8: 2515
    • 8b Sumida Y, Takada Y, Hayashi S, Hirano K, Yorimitsu H, Oshima K. Chem. Asian J. 2008; 3: 119
    • 8c Jang M, Hayashi S, Hirano K, Yorimitsu H, Oshima K. Tetrahedron Lett. 2007; 48: 4003
    • 8d Sai M, Yorimitsu H, Oshima K. Angew. Chem. Int. Ed. 2011; 50: 3294
  • 9 Waibel M, Cramer N. Angew. Chem. Int. Ed. 2010; 49: 4455
  • 10 Wang Y, Kang Q. Org. Lett. 2014; 16: 4190
    • 11a Kinoshita H, Shinokubo H, Oshima K. Org. Lett. 2004; 6: 4085
    • 11b Uozumi Y, Tanaka H, Shibatomi K. Org. Lett. 2004; 6: 281
    • 11c Uozumi Y, Suzuka T. J. Org. Chem. 2006; 71: 8644
    • 11d Nishikata T, Lipshutz BH. Org. Lett. 2009; 11: 2377
    • 11e Moser R, Nishikata T, Lipshutz BH. Org. Lett. 2010; 12: 28
    • 11f Xiong T, Li Y, Mao LJ, Zhang Q. Chem. Commun. 2012; 48: 2246
    • 11g Nishikata T, Lipshutz BH. J. Am. Chem. Soc. 2009; 131: 12103
    • 11h Baig RB. N, Varma RS. Ind. Eng. Chem. Res. 2014; 53: 18625
    • 11i Ueda M, Hartwig JF. Org. Lett. 2010; 12: 92
    • 11j You S.-L, Hou X.-L, Dai L.-X, Yu Y.-H, Xia W. J. Org. Chem. 2002; 67: 4684
    • 11k Gärtner M, Mader S, Seehafer K, Helmchen G. J. Am. Chem. Soc. 2011; 133: 2072
  • 12 Metayer B, Mingot A, Vullo D, Supuran CT, Thibaudeau S. Chem. Commun. 2013; 49: 6015
  • 13 Dong X, Sang R, Wang Q, Tang XY, Shi M. Chem. Eur. J. 2013; 19: 16910
  • 14 Zhang DH, Tang XY, Wei Y, Shi M. Chem. Eur. J. 2013; 19: 13668