Synthesis 2015; 47(08): 1076-1084
DOI: 10.1055/s-0034-1380160
feature
© Georg Thieme Verlag Stuttgart · New York

Rhodium-Catalyzed Intermolecular [5+1] and [5+2] Cycloadditions Using 1,4-Enynes with an Electron-Donating Ester on the 3-Position

Casi M. Schienebeck
a   School of Pharmacy, University of Wisconsin, Madison, WI 53706, USA
,
Wangze Song
a   School of Pharmacy, University of Wisconsin, Madison, WI 53706, USA
,
Angela M. Smits
a   School of Pharmacy, University of Wisconsin, Madison, WI 53706, USA
,
Weiping Tang*
a   School of Pharmacy, University of Wisconsin, Madison, WI 53706, USA
b   Department of Chemistry, University of Wisconsin, Madison, WI 53705, USA   Email: wtang@pharmacy.wisc.edu
› Author Affiliations
Further Information

Publication History

Received: 17 November 2014

Accepted after revision: 22 January 2015

Publication Date:
02 March 2015 (online)


Abstract

Various 3-acyloxy-1,4-enynes could be employed in rhodium-catalyzed intermolecular [5+1] and [5+2] cycloadditions with CO or alkynes, respectively. The rate of these cycloadditions could be accelerated significantly by using 1,4-enynes with an electron-donating ester on the 3-position. The scope of rhodium-catalyzed [5+1] and [5+2] cy­cloadditions were examined by using 1,4-enynes bearing an electron-donating ester.

1 Introduction

2 Rhodium-Catalyzed Intermolecular [5+2] Cycloaddition

3 Rhodium-Catalyzed Intermolecular [5+1] Cycloaddition

4 Conclusion

Supporting Information

 
  • References

  • 1 C.M.S. and W.S. contributed equally to this work.

    • For selected reviews, see:
    • 2a Lautens M, Klute W, Tam W. Chem. Rev. 1996; 96: 49
    • 2b Ojima I, Tzamarioudaki M, Li ZY, Donovan RJ. Chem. Rev. 1996; 96: 635
    • 2c Frühauf HW. Chem. Rev. 1997; 97: 523
    • 2d Trost BM, Krische MJ. Synlett 1998; 1
    • 2e Yet L. Chem. Rev. 2000; 100: 2963
    • 2f Aubert C, Buisine O, Malacria M. Chem. Rev. 2002; 102: 813
    • 2g Michelet V, Toullec PY, Genet JP. Angew. Chem. Int. Ed. 2008; 47: 4268
    • 2h Yu Z.-X, Wang Y, Wang Y. Chem. Asian J. 2010; 5: 1072
    • 2i Inglesby PA, Evans PA. Chem. Soc. Rev. 2010; 39: 2791
    • 2j Aubert C, Fensterbank L, Garcia P, Malacria M, Simonneau A. Chem. Rev. 2011; 111: 1954
    • 3a Brancour C, Fukuyama T, Ohta Y, Ryu I, Dhimane AL, Fensterbank L, Malacria M. Chem. Commun. 2010; 46: 5470
    • 3b Fukuyama T, Ohta Y, Brancour C, Miyagawa K, Ryu I, Dhimane A.-L, Fensterbank L, Malacria M. Chem. Eur. J. 2012; 18: 7243
    • 4a Shu X.-Z, Li X, Shu D, Huang S, Schienebeck CM, Zhou X, Robichaux PJ, Tang W. J. Am. Chem. Soc. 2012; 134: 5211
    • 4b Shu X.-Z, Huang S, Shu D, Guzei IA, Tang W. Angew. Chem. Int. Ed. 2011; 50: 8153
    • 4c Shu X.-Z, Schienebeck CM, Song W, Guzei IA, Tang W. Angew. Chem. Int. Ed. 2013; 52: 13601

      For our recent reviews, see:
    • 5a Shu X.-Z, Shu D, Schienebeck CM, Tang W. Chem. Soc. Rev. 2012; 41: 7698
    • 5b Schienebeck CM, Li X, Shu X.-Z, Tang W. Pure Appl. Chem. 2014; 86: 409
  • 6 Schienebeck CM, Robichaux PJ, Li X, Chen L, Tang W. Chem. Commun. 2013; 49: 2616
  • 7 Xu X, Liu P, Shu X.-Z, Tang W, Houk KN. J. Am. Chem. Soc. 2013; 135: 9271
    • 8a Marion N, Nolan SP. Angew. Chem. Int. Ed. 2007; 46: 2750
    • 8b Marco-Contelles J, Soriano E. Chem. Eur. J. 2007; 13: 1350
    • 8c Wang S, Zhang G, Zhang L. Synlett 2010; 692