Synthesis 2015; 47(06): 737-759
DOI: 10.1055/s-0034-1379720
review
© Georg Thieme Verlag Stuttgart · New York

Carbon–Hydrogen Bond Functionalizations Mediated by Copper

Xiao-hua Cai*
College of Chemistry and Environmental Science, Guizhou Minzhu University, Guiyang 550025, P. R. of China   Email: caixh1111@163.com
,
Bing Xie
College of Chemistry and Environmental Science, Guizhou Minzhu University, Guiyang 550025, P. R. of China   Email: caixh1111@163.com
› Author Affiliations
Further Information

Publication History

Received: 15 August 2014

Accepted after revision: 17 September 2014

Publication Date:
17 February 2015 (online)


Abstract

Direct carbon–hydrogen bond functionalization has attracted considerable attention and plays a key role in organic transformations. Currently, copper is showing great potential as a catalyst in C–H bond-functionalization reactions because of its low cost and unique reactivity. This review summarizes the recent advances in copper-catalyzed C–H bond functionalizations from carbon–carbon and carbon–heteroatom (O, N and S) bond-forming reactions through activation of C–H bonds.

1 Introduction

2 Carbon–Carbon Bond Formation

2.1 Csp–H Bond Functionalization

2.2 Csp2–H Bond Functionalization

2.3 Csp3–H Bond Functionalization

3 Carbon–Heteroatom Bond Formation

3.1 Carbon–Oxygen Bond Formation

3.2 Carbon–Nitrogen Bond Formation

3.3 Carbon–Sulfur Bond Formation

4 Conclusion

 
  • References

  • 1 Yan GB, Wu XM, Yang MH. Org. Biomol. Chem. 2013; 11: 5558
    • 2a Giri R, Shi B.-F, Engle KM, Maugel N, Yu J.-Q. Chem. Soc. Rev. 2009; 38: 3242
    • 2b Ackermann L, Vicente R, Kapdi R. Angew. Chem. Int. Ed. 2009; 48: 9792
    • 2c Doyle MP, Duffy R, Ratnikov M, Zhou L. Chem. Rev. 2010; 110: 704
    • 2d Collet F, Lescot C, Dauban P. Chem. Soc. Rev. 2011; 40: 1926
    • 2e Borovik AS. Chem. Soc. Rev. 2011; 40: 1870
    • 2f Gutekunst WR, Baran PS. Chem. Soc. Rev. 2011; 40: 1976
    • 2g Cho SH, Kim JY, Kwak J, Chang S. Chem. Soc. Rev. 2011; 40: 5068
  • 3 Gaillard S, Cazin CS. J, Nolan SP. Acc. Chem. Res. 2012; 45: 778
  • 4 Yang L, Lu Z, Stahl SS. Chem. Commun. 2009; 6460
    • 5a Aguila MJ. B, Badiei YM, Warren TH. J. Am. Chem. Soc. 2013; 135: 9399
    • 5b Wencel-Delord J, Dröge T, Liu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
    • 5c King AE, Huffman LM, Casitas A, Costas M, Ribas X, Stahl SS. J. Am. Chem. Soc. 2010; 132: 12068
    • 5d Yoshikai N, Nakamura E. Chem. Rev. 2012; 112: 2339
  • 6 Labinger JA, Bercaw JE. Nature 2002; 417: 507
    • 7a Dick AR, Sanford MS. Tetrahedron 2006; 62: 2439
    • 7b Tang SY, Gong TJ, Fu Y. Sci. Chin. Chem. 2013; 56: 619
    • 8a Wei W.-T, Song R.-J, Li J.-H. Adv. Synth. Catal 2014; 356: 1703
    • 8b Zhao JC, Fang H, Han JL, Pan Y. Org. Lett. 2014; 16: 2530
    • 8c Gephart RT, McMullin CL, Sapiezynski NG, Jang ES, Aguila MJ. B, Cundari TR, Warren TH. J. Am. Chem. Soc. 2012; 134: 17350
  • 9 Wendlandt AE, Suess AM, Stahl SS. Angew. Chem. Int. Ed. 2011; 50: 11062
    • 10a Egbert JD, Cazin CS. J, Nolan SP. Catal. Sci. Technol. 2013; 3: 912
    • 10b Zhang C, Tang CH, Jiao N. Chem. Soc. Rev. 2012; 41: 3464
    • 10c Ramirez TA, Zhao BG, Shi Y. Chem. Soc. Rev. 2012; 41: 931
    • 10d Evano G, Blanchard N, Toumi M. Chem. Rev. 2008; 108: 3054
    • 10e Casitas A, Ribas X. Chem. Sci. 2013; 4: 2301
  • 11 Zhang Q, Chen J.-X, Gao W.-X, Ding J.-C, Wu H.-Y. Appl. Organomet. Chem. 2010; 24: 809
  • 12 Gooßen LJ, Rodríguez N, Manjolinho F, Lange PP. Adv. Synth. Catal. 2010; 352: 2913
  • 13 Wang T, Chen X.-L, Chen L, Zhang Z.-P. Org. Lett. 2011; 13: 3324
  • 14 Inamoto K, Asano N, Kobayashi K, Yonemoto M, Kondo YA. Org. Biomol. Chem. 2012; 10: 1514
  • 15 Li TY, Qu XM, Xie GL, Mao JC. Chem. Asian J. 2013; 6: 1325
  • 16 Gonda Z, Tolnai GL, Novák Z. Chem. Eur. J. 2010; 16: 11822
  • 17 Ding ST, Yan YP, Jiao N. Chem. Commun. 2013; 49: 4250
  • 18 Jovera J, Maseras F. Chem. Commun. 2013; 49: 10486
  • 19 Hosseini-Sarvari M, Moeini F. New J. Chem. 2014; 38: 624
  • 20 Do H.-Q, Khan RM. K, Daugulis O. J. Am. Chem. Soc. 2008; 130: 15185
  • 21 Do H.-Q, Daugulis O. J. Am. Chem. Soc. 2009; 131: 17052
  • 22 Do H.-Q, Daugulis O. J. Am. Chem. Soc. 2011; 133: 13577
  • 23 Li A, Jin J, Qian WX, Bao WL. Org. Biomol. Chem. 2010; 8: 326
  • 24 Nishino M, Hirano K, Satoh T, Miura M. Angew. Chem. 2013; 125: 4553
  • 25 Barbero N, SanMartin R, Domínguez E. Org. Biomol. Chem. 2010; 8: 841
  • 26 Liang D, Wang M, Bekturhun B, Xiong B, Liu LQ. Adv. Synth. Catal. 2010; 352: 1593
  • 27 Zhang L, Cheng JH, Ohishi T, Hou ZM. Angew. Chem. Int. Ed. 2010; 49: 8670
  • 28 Boogaerts II. F, Fortman GC, Furst MR. L, Cazin CS. J, Nolan SP. Angew. Chem. Int. Ed. 2010; 49: 8674
    • 29a Inomata H, Ogata K, Fukuzawa S, Hou ZM. Org. Lett. 2012; 14: 3986
    • 29b Zhang L, Hou Z. Pure Appl. Chem. 2012; 84: 1705
  • 30 Vechorkin O, Hirt N, Hu XL. Org. Lett. 2010; 12: 3567
  • 31 Yoo W.-J, Capdevila MG, Du XW, Kobayashi S. Org. Lett. 2012; 14: 5326
  • 32 Zhu MW, Fujita K, Yamaguchi R. Chem. Commun. 2011; 47: 12876
  • 33 Liao Q, Zhang LY, Li ST, Xi CJ. Org. Lett. 2011; 13: 228
  • 34 Duong HA, Gilligan RE, Cooke ML, Phipps RJ, Gaunt MJ. Angew. Chem. Int. Ed. 2011; 50: 463
  • 35 Qin XR, Cong XF, Zhao DB, You JS, Lan JB. Chem. Commun. 2011; 47: 5611
  • 36 Nishino M, Hirano K, Satoh T, Miura M. Angew. Chem. Int. Ed. 2012; 51: 6993
    • 37a Lafrance M, Rowley CN, Woo TK, Fagnou K. J. Am. Chem. Soc. 2006; 128: 8754
    • 37b Lapointe D, Fagnou K. Chem. Lett. 2010; 39: 1118
  • 38 King AE, Huffman LM, Casitas A, Costas M, Ribas X, Stahl SS. J. Am. Chem. Soc. 2010; 132: 12068
  • 39 Rao HH, Li CJ. Angew. Chem. Int. Ed. 2011; 50: 8936
  • 40 Hu J, Adogla EA, Ju Y, Fan DP, Wang Q. Chem. Commun. 2012; 48: 11256
  • 41 Salvanna N, Reddy GC, Rao BR, Das B. RSC Adv. 2013; 3: 20538
  • 42 Truong T, Klimovica K, Daugulis O. J. Am. Chem. Soc. 2013; 135: 9342
  • 43 Liu P, Liu J.-L, Wang H.-S, Pan Y.-M, Liang H, Chen Z.-F. Chem. Commun. 2014; 50: 4795
  • 44 Zhu W, Zhang DY, Yang N, Liu H. Chem. Commun. 2014; 50: 10634
  • 45 Perry A, Taylor RJ. K. Chem. Commun. 2009; 3249
  • 46 Rueping M, Tolstoluzhsky N. Org. Lett. 2011; 13: 1095
  • 47 Xiong T, Li Y, Bi XH, Lv YH, Zhang Q. Angew. Chem. Int. Ed. 2011; 50: 7140
  • 48 Gong C, Liu L. J. Am. Chem. Soc. 2011; 133: 15300
  • 49 Chen C, Xu X.-H, Yang B, Qing F.-L. Org. Lett. 2014; 16: 3372
  • 50 Mitsudera H, Li CJ. Tetrahedron Lett. 2011; 52: 1898
  • 51 Jin J.-J, Niu H.-Y, Qu G.-R, Guo H.-M, Fossey JS. RSC Adv. 2012; 2: 5968
  • 52 Trifonidou M, Kokotos CG. Eur. J. Org. Chem. 2012; 1563
  • 53 Xiao J. Org. Lett. 2012; 14: 1716
  • 54 Shibata M, Ikeda M, Motoyama K, Miyake Y, Nishibayashi Y. Chem. Commun. 2012; 48: 9528
  • 55 Komai H, Yoshino T, Matsunaga S, Kanai M. Synthesis 2012; 44: 2185
  • 56 Li ZJ, Zhang Y, Zhang LZ, Liu Z.-Q. Org. Lett. 2014; 16: 382
  • 57 Liu JM, Yi H, Zhang X, Liu C, Liu R, Zhang GT, Lei AW. Chem. Commun. 2014; 50: 7636
  • 58 Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
  • 59 Kumar GS, Maheswari CU, Kumar RA, Kantam ML, Reddy KR. Angew. Chem. Int. Ed. 2011; 50: 11748
  • 60 Kumar GS, Pieber B, Reddy KR, Kappe CO. Chem. Eur. J. 2012; 18: 6124
  • 61 Cheung CW, Buchwald SL. J. Org. Chem. 2012; 77: 7526
  • 62 Roane J, Daugulis O. Org. Lett. 2013; 15: 5842
  • 63 Bariwal J, Van der Eycken E. Chem. Soc. Rev. 2013; 42: 9283
  • 64 Monguchi D, Fujiwara T, Furukawa H, Mori A. Org. Lett. 2009; 11: 1607
  • 65 Guo SM, Qian B, Xie YJ, Xia CG, Huang HM. Org. Lett. 2011; 13: 522
    • 66a Nam W. Acc. Chem. Res. 2007; 40: 465
    • 66b Zhang C, Jiao N. J. Am. Chem. Soc. 2010; 132: 28
    • 66c Zhang C, Jiao N. Angew. Chem. Int. Ed. 2010; 49: 6174
  • 67 Tian J.-S, Loh T.-P. Angew. Chem. Int. Ed. 2010; 49: 8417
  • 68 Giri R, Hartwig JF. J. Am. Chem. Soc. 2010; 132: 15860
  • 69 Berrino R, Cacchi S, Fabrizi G, Goggiamani A. J. Org. Chem. 2012; 77: 2537
  • 70 Guru MM, Punniyamurthy T. J. Org. Chem. 2012; 77: 5063
  • 71 Li DK, Wang M, Liu J, Zhao Q, Wang L. Chem. Commun. 2013; 49: 3640
  • 72 Ou Y, Jiao N. Chem. Commun. 2013; 49: 3473
  • 73 Girard C, Önen E, Aufort M, Beauvière S, Samson E, Herscovici J. Org. Lett. 2006; 8: 1689
  • 74 Zhu CW, Yi ML, Wei DH, Chen X, Wu YJ, Cui XL. Org. Lett. 2014; 16: 1840
  • 75 Wu XS, Zhao Y, Zhang GW, Ge HB. Angew. Chem. Int. Ed. 2014; 53: 3706
  • 76 Ranjit S, Lee R, Heryadi D, Shen C, Wu JE, Zhang PF, Huang K.-W, Liu XG. J. Org. Chem. 2011; 76: 8999
  • 77 Zhou A.-X, Liu X.-Y, Yang K, Zhao S.-C, Liang Y.-M. Org. Biomol. Chem. 2011; 9: 5456
  • 78 Wu ZY, Song HY, Cui XL, Pi C, Du WW, Wu YJ. Org. Lett. 2013; 15: 1270
  • 79 Zhang ML, Zhang SH, Liu MC, Cheng J. Chem. Commun. 2011; 47: 11522
    • 80a Bartholomew ER, Bertz SH, Cope S, Murphy M, Ogle CA. J. Am. Chem. Soc. 2008; 130: 11244
    • 80b Bertz SH, Cope S, Murphy M, Ogle CA, Taylor BJ. J. Am. Chem. Soc. 2007; 129: 7208
    • 80c Hu HP, Snyder JP. J. Am. Chem. Soc. 2007; 129: 7210
  • 81 Klečka M, Pohl R, Čejka J, Hocek M. Org. Biomol. Chem. 2013; 11: 5189