Synlett 2014; 25(20): 2831-2841
DOI: 10.1055/s-0034-1379250
account
© Georg Thieme Verlag Stuttgart · New York

Design of Molecular Transformations Based on the Concerted Function of Two Zinc Atoms in Bis(iodozincio)methane

Mutsumi Sada
a   Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo, 615-8510 Kyoto, Japan   Fax: +81(075)3832438   Email: matsubara.seijiro.2e@kyoto-u.ac.jp
,
Masanobu Uchiyama
b   Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
,
Seijiro Matsubara*
a   Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo, 615-8510 Kyoto, Japan   Fax: +81(075)3832438   Email: matsubara.seijiro.2e@kyoto-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 18 July 2014

Accepted after revision: 15 September 2014

Publication Date:
12 November 2014 (online)


Abstract

Bis(iodozincio)methane, prepared from diiodomethane and zinc metal in the presence of a lead catalyst, is capable of performing several unique molecular transformations. It can operate not only as a dianion, but also as a bidentate Lewis acid. In this ­account, the methylenation of carbonyl compounds, nucleophilic cyclopropanation reactions, 1,4-addition reactions of bis(iodozincio)methane, and reduction reactions of π-allylpalladium are discussed, along with the associated density functional theory calculations.

1 Introduction

2 Methylenation of Carbonyl Compounds

3 Nucleophilic Cyclopropanation

3.1 Cyclopropanation of 1,2-Diketones

3.2 Asymmetric Construction of Quaternary Carbon Atoms by Stereospecific Cyclopropanation

4 1,4-Addition Reactions of Bis(iodozincio)methane

4.1 Three-Atom Ring-Contraction Reaction

4.2 Enolate–Homoenolate Intermediates and Their Reactions

5 Reduction of π-Allylpalladium Derivatives

6 Conclusions and Outlook

 
  • References

  • 1 Present Address: Shionogi Pharmaceutical Research Center, 3-1-1, Futaba-cho, Toyonaka, Osaka 561-0825, Japan.
    • 2a Turnbell P, Syoro K, Fried JH. J. Am. Chem. Soc. 1966; 88: 4764
    • 2b Harrison IT, Rawson RJ, Turnbull P, Fried JH. J. Org. Chem. 1971; 36: 3515
    • 2c Hashimoto H, Hida M, Miyano S. Kogyo Kagaku Zasshi 1966; 69: 174
    • 2d Hashimoto H, Hida M, Miyano S. J. Organomet. Chem. 1967; 10: 518
    • 3a Marek I, Normant J.-F. Chem. Rev. 1996; 96: 3241
    • 3b Marek I. Chem. Rev. 2000; 100: 2887
    • 3c Normant J.-F. Acc. Chem. Res. 2001; 34: 640
    • 3d Knochel P In Handbook of Grignard Reagents . Silverman GS, Rakita PE. Marcel Dekker; New York: 1996. Chap. 30, 633
    • 3e Müller JF. K. Eur. J. Inorg. Chem. 2000; 789
    • 3f Matsubara S, Oshima K, Utimoto K. J. Organomet. Chem. 2001; 617–618: 39
    • 3g Matsubara S, Oshima K. Proc. Jpn. Acad., Ser. B 2003; 79: 71
    • 3h Matsubara S, Oshima K In Modern Carbonyl Olefination: Methods and Applications . Takeda T. Wiley-VCH; Weinheim: 2004. Chap. 5, 200
    • 3i Marek I, Normant J.-F In Organozinc Reagents: A Practical Approach . Knochel P. Jones P; Oxford University Press: Oxford: 1999. Chap. 7, 119
    • 3j Takai K, Nitta K, Utimoto K. J. Am. Chem. Soc. 1986; 108: 7408
  • 4 Nysted LN. US 3865848, 1975 ; Chem. Abstr. 1975, 83, 10406. (The Nysted reagent is commercially available from Sigma-Aldrich Corp., St Louis, MO, USA)
    • 5a Takai K, Hotta Y, Oshima K, Nozaki H. Tetrahedron Lett. 1978; 19: 2417
    • 5b Hibino J.-i, Okazoe T, Takai K, Nozaki H. Tetrahedron Lett. 1985; 26: 5579
    • 5c Okazoe T, Hibino J.-i, Takai K, Nozaki H. Tetrahedron Lett. 1985; 26: 5581
    • 6a Lombardo L. Tetrahedron Lett. 1982; 23: 4293
    • 6b Lombardo L. Org. Synth. 1987; 65: 81
  • 7 Takai K, Kakiuchi T, Kataoka Y, Utimoto K. J. Org. Chem. 1994; 59: 2668
    • 9a Matsubara S, Oshima K, Matsuoka H, Matsumoto K, Ishikawa K, Matsubara E. Chem. Lett. 2005; 34: 952
    • 9b Matsubara S, Yoshino H, Yamamoto Y, Oshima K, Matsuoka H, Matsumoto K, Ishikawa K, Matsubara E. J. Organomet. Chem. 2005; 690: 5546
    • 9c Matsubara S, Yamamoto Y, Utimoto K. Synlett 1999; 1471
  • 10 Matsubara S In The Chemistry of Organozinc Compounds . Rappoport Z. Marek I.; Wiley; Chichester: 2006. Part 1, Chap. 14, 641
    • 11a Wittig G, Geissler G. Justus Liebigs Ann. Chem. 1953; 580: 44
    • 11b Schlosser M. Top. Stereochem. 1970; 5: 1
    • 11c Schaub B, Jenny T, Schlosser M. Tetrahedron Lett. 1984; 25: 4097
    • 11d Maercker A. Org. React. (N. Y.) 1965; 14: 270
    • 11e Maryanoff BE, Reits AB. Chem. Rev. 1989; 89: 863
  • 12 Sada M, Komagawa S, Uchiyama M, Kobata M, Mizuno T, Utimoto K, Oshima K, Matsubara S. J. Am. Chem. Soc. 2010; 132: 17452

    • In our work using low-valent titanium chloride before 2001, we prepared the low-valent titanium chloride from TiCl4 and Me3SiSiMe3 according to a reported procedure for the preparation of TiCl2; see:
    • 13a Naula SP, Sharma HK. Inorg. Synth. 1985; 24: 181

    • However, this procedure actually gives β-TiCl3; see:
    • 13b Hermes AR, Giriolami GS. Inorg. Synth. 1998; 32: 309

    • See also:
    • 13c Hashimoto Y, Mizuno U, Matsuoka H, Miyahara T, Takahara M, Yoshimoto M, Oshima K, Utimoto K, Matsubara S. J. Am. Chem. Soc. 2001; 123: 1503 ; corrigendum: J. Am. Chem. Soc. 2001, 123, 4869
    • 13d In our previous reports, TiCl2 should be corrected to β-TiCl3.
    • 14a Matsubara S, Ukai K, Mizuno T, Utimoto K. Chem. Lett. 1999; 825
    • 14b Yoshino H, Kobata M, Yamamoto Y, Oshima K, Matsubara S. Chem. Lett. 2004; 1224
  • 15 The basis set denoted as 631SVPs consists of Ahlrichs’s SVP all-electron basis set for the zinc atom and 6–31G* for the other atoms.
    • 16a Ukai K, Oshima K, Matsubara S. J. Am. Chem. Soc. 2000; 122: 12047
    • 16b Matsubara S, Ukai K, Fushimi H, Yokota Y, Yoshino H, Oshima K, Omoto K, Ogawa A, Hioki Y, Fujimoto H. Tetrahedron 2002; 58: 8255
  • 17 Nomura K, Asano K, Kurahashi T, Matsubara S. Heterocycles 2008; 76: 1381
    • 18a Wender PA, Filosa MP. J. Org. Chem. 1976; 41: 3490
    • 18b Thomas E, Kasatkin AN, Whitby RJ. Tetrahedron Lett. 2006; 47: 9181
    • 18c Wallock NJ, Donaldson WA. Org. Lett. 2005; 7: 2047
    • 18d Davies HM, Doan DB. J. Org. Chem. 1999; 64: 8501
    • 19a Takada Y, Nomura K, Matsubara S. Org. Lett. 2010; 12: 5204
    • 19b Haraguchi R, Takada Y, Matsubara S. Chem. Lett. 2012; 41: 628
    • 20a Nomura K, Matsubara S. Chem. Lett. 2007; 36: 164
    • 20b Cheng K, Carroll PJ, Walsh PJ. Org. Lett. 2011; 13: 2346
    • 20c Das PP, Belmore K, Cha JK. Angew. Chem. Int. Ed. 2012; 51: 9517
  • 21 Hashiyama T, Morikawa K, Sharpless KB. J. Org. Chem. 1992; 57: 5067
  • 22 Martin V, Woodard S, Katsuki T, Yamada Y, Ikeda M, Sharpless KB. J. Amer. Chem. Soc. 1981; 103: 6237
    • 23a Nomura K, Oshima K, Matsubara S. Angew. Chem. Int. Ed. 2005; 44: 5860
    • 23b Nomura K, Matsubara S. Chem. Asian J. 2010; 5: 147
  • 25 Sada M, Furuyama T, Komagawa S, Uchiyama M, Matsubara S. Chem. Eur. J. 2010; 16: 10474
  • 27 Sada M, Matsubara S. J. Am. Chem. Soc. 2010; 132: 432
  • 28 Nomura K, Hirayama T, Matsubara S. Chem. Asian J. 2009; 4: 1298
  • 29 Hirayama T, Oshima K, Matsubara S. Angew. Chem. Int. Ed. 2005; 44: 3293
    • 30a Tamaru Y. J. Organomet. Chem. 1999; 576: 215
    • 30b Tabuchi T, Inanaga J, Yamaguchi M. Tetrahedron Lett. 1986; 27: 1195
    • 30c Takahara JP, Masuyama Y, Kurusu Y. J. Am. Chem. Soc. 1992; 114: 2577
    • 30d Zanoni G, Gladiali S, Marchetti A, Piccinini P, Tredici I, Vidari G. Angew. Chem. Int. Ed. 2004; 43: 846
    • 30e Howell GP, Minnaard AJ, Feringa BL. Org. Biomol. Chem. 2006; 4: 1278
    • 30f Barczak NT, Grote RE, Jarvo ER. Organometallics 2007; 26: 4863
  • 31 Tamaru Y, Tanaka A, Yasui K, Goto S, Tanaka S. Angew. Chem. Int. Ed. 1995; 34: 787
  • 32 Ueno S, Sada M, Matsubara S. Chem. Lett. 2010; 39: 96
  • 33 Sada M, Nomura K, Matsubara S. Org. Biomol. Chem. 2011; 9: 1389
  • 34 Haraguchi R, Matsubara S. Org. Lett. 2013; 15: 3378