Synthesis 2015; 47(19): 2945-2956
DOI: 10.1055/s-0034-1378862
special topic
© Georg Thieme Verlag Stuttgart · New York

Simple Method for sp2–sp3 and sp3–sp3 Carbon–Carbon Bond Activation in 2-Substituted 1,3-Diketones

Tadashi Aoyama*
a  Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan   Email: aoyama.tadashi@nihon-u.ac.jp
b  The Center for Creative Materials Research, Research Institute of Science and Technology, College of Science and Technology, Nihon University, Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan
,
Mamiko Hayakawa
a  Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan   Email: aoyama.tadashi@nihon-u.ac.jp
,
Sho Kubota
a  Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan   Email: aoyama.tadashi@nihon-u.ac.jp
,
Sumire Ogawa
a  Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan   Email: aoyama.tadashi@nihon-u.ac.jp
,
Erika Nakajima
a  Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan   Email: aoyama.tadashi@nihon-u.ac.jp
,
Emi Mitsuyama
a  Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan   Email: aoyama.tadashi@nihon-u.ac.jp
,
Taku Iwabuchi
a  Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan   Email: aoyama.tadashi@nihon-u.ac.jp
,
Haruki Kaneko
a  Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan   Email: aoyama.tadashi@nihon-u.ac.jp
,
Rina Obara
a  Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan   Email: aoyama.tadashi@nihon-u.ac.jp
,
Toshio Takido
a  Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan   Email: aoyama.tadashi@nihon-u.ac.jp
,
Mitsuo Kodomari
c  The Institute of Natural Sciences, College of Humanities and Science, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
,
Akihiko Ouchi
a  Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan   Email: aoyama.tadashi@nihon-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 30 April 2015

Accepted after revision: 05 June 2015

Publication Date:
29 July 2015 (eFirst)

Abstract

Simple and efficient methods were developed for sp2–sp3 and sp3–sp3 C–C bond-activation reactions of 2-substituted 1,3-diketones. 3-Substituted 3-bromopentane-2,4-diones were deacylated in the presence of an aromatic compound and a silica gel supported ­Brønsted­ acid containing sulfonic groups. The carbocation formed by cleavage of the sp3–sp3 C–C bond of the dione alkylated the aromatic compound.

Supporting Information

 
  • References

    • 1a Liu H, Feng M, Jiang X. Chem. Asian J. 2014; 9: 3360
    • 1b Bonesi SM, Fagnoni M. Chem. Eur. J. 2010; 16: 13572
    • 1c Jun C.-H. Chem. Soc. Rev. 2004; 33: 610
    • 2a Seiser T, Cramer N. J. Am. Chem. Soc. 2010; 132: 5340
    • 2b Winter C, Krause N. Angew. Chem. Int. Ed. 2009; 48: 2460
    • 2c Murakami M, Makino M, Ashida S, Matsuda T. Bull. Chem. Soc. Jpn. 2006; 79: 1315
    • 2d Pohlhaus PD, Bowman RK, Johnson JS. J. Am. Chem. Soc. 2004; 126: 2294
    • 2e Matsumura S, Maeda Y, Nishimura T, Uemura S. J. Am. Chem. Soc. 2003; 125: 8862
    • 2f Bart SC, Chirik PJ. J. Am. Chem. Soc. 2003; 125: 886
    • 2g Perthuisot C, Edelbach BL, Zubris DL, Simhai N, Iverson CN, Müller C, Satoh T, Jones WD. J. Mol. Catal. A: Chem. 2002; 189: 157
    • 2h Kondo T, Kaneko Y, Taguchi Y, Nakamura A, Okada T, Shiotsuki M, Ura Y, Wada K, Mitsudo T.-a. J. Am. Chem. Soc. 2002; 124: 6824
    • 2i Kim S, Takeuchi D, Osakada K. J. Am. Chem. Soc. 2002; 124: 762
    • 3a Park YJ, Park J.-W, Jun C.-H. Acc. Chem. Res. 2008; 41: 222
    • 3b Jun C.-H, Moon CW, Lee D.-Y. Chem. Eur. J. 2002; 8: 2422
    • 3c Lee D.-Y, Kim I.-J, Jun C.-H. Angew. Chem. Int. Ed. 2002; 41: 3031
    • 3d Jun C.-H, Lee H, Lim S.-G. J. Am. Chem. Soc. 2001; 123: 751
    • 3e Jun C.-H, Lee D.-Y, Kim Y.-H, Lee H. Organometallics 2001; 20: 2928
    • 3f Jun C.-H, Lee D.-Y, Lee H, Hong J.-B. Angew. Chem. Int. Ed. 2000; 39: 3070
    • 3g Gandelman M, Milstein D. Chem. Commun. 2000; 1603
    • 4a Sugiishi T, Kimura A, Nakamura H. J. Am. Chem. Soc. 2010; 132: 5332
    • 4b Nájera C, Sansano JM. Angew. Chem. Int. Ed. 2009; 48: 2452
    • 4c Schmink JR, Leadbeater NE. Org. Lett. 2009; 11: 2575
    • 4d Tobisu M, Chatani N. Chem. Soc. Rev. 2008; 37: 300
    • 4e Kuninobu Y, Takata H, Kawata A, Takai K. Org. Lett. 2008; 10: 3133
    • 5a Xu Q, Cheng B, Ye X, Zhai H. Org. Lett. 2009; 11: 4136
    • 5b Takahashi T, Song Z, Hsieh Y.-F, Nakajima K, Kanno K.-i. J. Am. Chem. Soc. 2008; 130: 15236
    • 6a Liu Y, Sun J.-W. J. Org. Chem. 2012; 77: 1191
    • 6b Xie H, Jiang Y, Cheng Y, Zhu C. Chem. Commun. 2012; 48: 979
    • 6c Zhao J, Zhao Y, Fu H. Org. Lett. 2012; 14: 2710
    • 6d Rong Z.-Q, Jia M.-Q, You S.-L. Org. Lett. 2011; 13: 4080
    • 6e Liu W, Liu J, Ogawa D, Nishihara Y, Guo X, Li Z. Org. Lett. 2011; 13: 6272
    • 7a Adkins H, Kutz W, Coffman DD. J. Am. Chem. Soc. 1930; 52: 3212
    • 7b Beckham LJ, Adkins H. J. Am. Chem. Soc. 1934; 56: 1119
    • 8a Kogan K, Biali SE. J. Org. Chem. 2009; 74: 7172
    • 8b Amijs CH. M, López-Carrillo V, Raducan M, Pérez-Galán P, Ferrer C, Echavarren AM. J. Org. Chem. 2008; 73: 7721
    • 8c Bray DJ, Jolliffe KA, Lindoy LF, McMurtrie JC. Tetrahedron 2007; 63: 1953
    • 8d Rezgui F, El Gaïed MM. Tetrahedron 1997; 53: 15711
    • 8e Hayashi T, Yamamoto A, Hagihara T. J. Org. Chem. 1986; 51: 723
    • 8f Stotter PL, Hill KA. Tetrahedron Lett. 1972; 13: 4067
    • 8g Mignani G, Morel D, Grass F. Tetrahedron Lett. 1987; 28: 5505
    • 8h Klimkin MA, Kasradze VG, Kukovinets OS, Galin FZ. Chem. Nat. Compd. (Engl. Transl.) 2001; 36: 609
  • 9 Kawata A, Takata K, Kuninobu Y, Takai K. Angew. Chem. Int. Ed. 2007; 46: 7793
  • 10 Biswas S, Maiti S, Jana U. Eur. J. Org. Chem. 2010; 2861
  • 11 He C, Guo S, Huang L, Lei A. J. Am. Chem. Soc. 2010; 132: 8273
  • 12 Fan X, He Y, Cui L, Guo S, Wang J, Zhang X. Eur. J. Org. Chem. 2012; 673
  • 13 Cai S, Wang F, Xi C. J. Org. Chem. 2012; 77: 2331
  • 14 Kavala V, Wang C.-C, Barange DK, Kuo C.-W, Lei P.-M, Yao C.-F. J. Org. Chem. 2012; 77: 5022
    • 15a Sun X, Wang M, Li P, Zhang X, Wang L. Green Chem. 2013; 15: 3289
    • 15b Zhang H, Wang M, Zhang Y, Wang L. RSC Adv. 2013; 3: 1311
    • 15c Sun X, Li P, Zhang X, Wang L. Org. Lett. 2014; 16: 2126
  • 16 Aoyama T, Takido T, Kodomari M. Tetrahedron Lett. 2004; 45: 1873
  • 17 Aoyama T, Kubota S, Takido T, Kodomari M. Chem. Lett. 2011; 40: 484
  • 18 Aoyama T, Hayakawa M, Ogawa S, Nakajima E, Mitsuyama E, Iwabuchi T, Takido T, Kodomari M. Synlett 2014; 25: 2493
    • 19a Li H, Li W, Liu W, He Z, Li Z. Angew. Chem. Int. Ed. 2011; 50: 2975
    • 19b Li W, Zheng X, Li Z. Adv. Synth. Catal. 2013; 355: 181
  • 20 Hajipour AR, Mirjalili BB. F, Zarei A, Khazdooz L, Ruoho AE. Tetrahedron Lett. 2004; 45: 6607
  • 21 Bellesia F, Ghelfi F, Grandi R, Pagnoni UM. J. Chem. Res., Synop. 1986; 428
  • 22 Lundin PM, Esquivias J, Fu GC. Angew. Chem. Int. Ed. 2009; 48: 154