Synthesis 2015; 47(17): 2570-2577
DOI: 10.1055/s-0034-1378813
feature
© Georg Thieme Verlag Stuttgart · New York

Efficiency of Industrially Relevant Atropisomeric Diphosphines in Copper-Catalyzed 1,4-Asymmetric Conjugate Addition of Dialkylzincs to Cyclic or Acyclic Enones or Dienones

Marie S. T. Morin
a   Ecole Nationale Supérieure de Chimie de Rennes, CNRS UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708, Rennes Cedex 7, France   Email: marc.mauduit@ensc-rennes.fr
,
Thomas Vives
a   Ecole Nationale Supérieure de Chimie de Rennes, CNRS UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708, Rennes Cedex 7, France   Email: marc.mauduit@ensc-rennes.fr
,
Olivier Baslé
a   Ecole Nationale Supérieure de Chimie de Rennes, CNRS UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708, Rennes Cedex 7, France   Email: marc.mauduit@ensc-rennes.fr
,
Christophe Crévisy*
a   Ecole Nationale Supérieure de Chimie de Rennes, CNRS UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708, Rennes Cedex 7, France   Email: marc.mauduit@ensc-rennes.fr
,
Virginie Ratovelomanana-Vidal*
b   PSL Research University, Chimie ParisTech-CNRS, Institut de Recherche de Chimie Paris, 75005 Paris, France
,
Marc Mauduit*
a   Ecole Nationale Supérieure de Chimie de Rennes, CNRS UMR 6226, 11 Allée de Beaulieu, CS 50837, 35708, Rennes Cedex 7, France   Email: marc.mauduit@ensc-rennes.fr
› Author Affiliations
Further Information

Publication History

Received: 06 May 2015

Accepted after revision: 29 June 2015

Publication Date:
03 August 2015 (online)


Abstract

Industrially relevant atropisomeric diphosphines such as 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl (BINAP), 6,6′-bis(diphenylphosphino)-2,2′,3,3′-tetrahydro-5,5′-bi-1,4-benzodioxin (SYNPHOS), and 5,5′-bis(diphenylphosphino)-2,2,2′,2′-tetrafluoro-4,4′-bi-1,3-benzodioxole (DIFLUORPHOS) have demonstrated their efficiency in the copper-catalyzed asymmetric conjugate addition of various dialkylzincs to α-aryl enones, α-aryl dienones, and cyclic dienones. Excellent 1,4- or 1,6-regioselectivities and enantioselectivities (up to 97% ee) were attained, even with challenging sterically hindered Michael acceptors.

Supporting Information

 
  • References


    • For metal-catalyzed asymmetric nucleophile addition to electron-deficient alkenes, see:
    • 1a Mauduit M, Baslé O, Clavier H, Crévisy C, Denicourt-Nowicki A In Comprehensive Organic Synthesis II . Vol. 4. Knochel P, Molander GA. Elsevier; Amsterdam: 2014. Chap. 4.04, 186

    • For an excellent comprehensive review, see also:
    • 1b Hawner C, Alexakis A. Chem. Commun. 2010; 46: 7295

      For Cu-catalyzed ACAs, see:
    • 2a Copper-Catalyzed Asymmetric Synthesis . Alexakis A, Krause N, Woodward S. Wiley-VCH; Weinheim: 2014
    • 2b Jerphagnon T, Pizzuti MG, Minnaard AJ, Feringa BL. Chem. Soc. Rev. 2009; 38: 1039
    • 2c Alexakis A, Bäckvall J, Krause N, Pàmies O, Diéguez M. Chem. Rev. 2008; 108: 2796
  • 3 den Hartog T, Rudolph A, Maciá B, Minnaard AJ, Feringa BL. J. Am. Chem. Soc. 2010; 132: 14349
    • 4a Wang S.-Y, Ji S.-J, Loh T.-P. J. Am. Chem. Soc. 2007; 129: 276
    • 4b Wang S.-Y, Lum T.-K, Ji S.-J, Loh T.-P. Adv. Synth. Catal. 2008; 350: 673
    • 4c Wang S.-Y, Song P, Loh T.-P. Adv. Synth. Catal. 2008; 350: 3185
    • 4d Wang S.-Y, Loh T.-P. Chem. Commun. 2010; 46: 8694
    • 4e See also ref. 3.
    • 5a Maciá Ruiz B, Geurts K, Fernández-Ibáñez MA, ter Horst B, Minnaard AJ, Feringa BL. Org. Lett. 2007; 9: 5123
    • 5b Lee JC. H, Hall DG. J. Am. Chem. Soc. 2010; 132: 5544
  • 6 Gremaud L, Alexakis A. Angew. Chem. Int. Ed. 2012; 51: 794
  • 7 Magrez-Chiquet M, Morin MS. T, Wencel-Delord J, Drissy Amraoui S, Baslé O, Alexakis A, Crévisy C, Mauduit M. Chem. Eur. J. 2013; 19: 13663
    • 8a Duprat de Paule S, Champion N, Vidal V, Genet J.-P, Dellis P. FR 2830254, 2001 EP 1436304, 2001, WO 03029259, 2003
    • 8b Duprat de Paule S, Jeulin S, Ratovelomanana-Vidal V, Genêt J.-P, Champion N, Dellis P. Eur. J. Org. Chem. 2003; 1931
    • 8c Duprat de Paule S, Jeulin S, Ratovelomanana-Vidal V, Genêt JP, Champion N, Deschaux G, Dellis P. Org. Process Res. Dev. 2003; 7: 399
    • 9a Jeulin S, Duprat de Paule S, Ratovelomanana-Vidal V, Genêt J.-P, Champion N, Dellis P. Angew. Chem. Int. Ed. 2004; 43: 320
    • 9b Jeulin S, Duprat de Paule S, Ratovelomanana-Vidal V, Genet J.-P, Champion N, Dellis P. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5799
    • 9c Genêt J.-P, Ayad T, Ratovelomanana-Vidal V. Chem. Rev. 2014; 114: 2824

      To the best of our knowledge, only two reports describe the synthesis of the 1,4-adduct 2a (with a maximum yield of 77% and 96% ee) by Cu-ACA processes involving phosphino-based BINOL or SPINOL ligands:
    • 10a Endo K, Ogawa M, Shibata T. Angew. Chem. Int. Ed. 2010; 49: 2410
    • 10b Endo K, Hamada D, Yakeishi S, Ogawa M, Shibata T. Org. Lett. 2012; 14: 2342
  • 11 To the best of our knowledge, only one report mentions this challenging ACA with a low yield of 5% but a higher ee of up to 74%, see: Takahashi Y, Yamamoto Y, Katagari K, Danjo H, Yamaguchi K, Imamoto T. J. Org. Chem. 2005; 70: 9009
  • 12 For a review on ACA with extended Michael acceptors, see: Csákÿ AG, de la Herrán G, Murcia MC. Chem. Soc. Rev. 2010; 39: 4080

    • For examples of Cu-catalyzed ACA on conjugated dienones, see:
    • 13a Fillion E, Wilsily A, Liao E.-T. Tetrahedron: Asymmetry 2006; 17: 2957
    • 13b Hénon H, Mauduit M, Alexakis A. Angew. Chem. Int. Ed. 2008; 47: 9122
    • 13c Wencel-Delord J, Alexakis A, Crévisy C, Mauduit M. Org. Lett. 2010; 12: 4335
    • 13d Tissot M, Poggiali D, Hénon H, Müller D, Guénée L, Mauduit M, Alexakis A. Chem. Eur. J. 2012; 18: 8731
    • 13e Magrez M, Wencel-Delord J, Alexakis A, Crévisy C, Mauduit M. Org. Lett. 2012; 14: 3576
    • 13f Ma Z, Xie F, Yu H, Zhang Y, Wu X, Zhang W. Chem. Commun. 2013; 49: 5292
  • 14 Coates RM, Sowerby RL. J. Am. Chem. Soc. 1972; 94: 5386
  • 15 For instance, it was observed that the Cu/phosphoramidite-catalyzed addition of Et2Zn or Et3Al to a cyclic dienone structurally close to 1h gave the 1,6-adduct, whereas the Cu/NHC-catalyzed addition of a Grignard reagent led to the 1,4-adduct; see ref. 13b.

    • For a specific review on BINAP, see:
    • 16a Noyori R, Takaya H. Acc. Chem. Res. 1990; 23: 345

    • For industrial enantioselective metal-catalyzed processes using BINAP, see:
    • 16b Akutagawa S. Appl. Catal., A 1995; 128: 171
  • 17 Liu D.-N, Tian S.-K. Chem. Eur. J. 2009; 15: 4538
  • 18 Pinto DC. G. A, Silva AM. S, Lévai A, Cavaleiro JA. S, Patonay T, Elguero J. Eur. J. Org. Chem. 2000; 2593
  • 19 Rana NK, Selvakumar S, Singh VK. J. Org. Chem. 2010; 75: 2089
  • 20 Shintani R, Fu GC. Org. Lett. 2002; 4: 3699