Synlett 2014; 25(6): 783-794
DOI: 10.1055/s-0033-1340618
account
© Georg Thieme Verlag Stuttgart · New York

The Anion-Binding Approach to Catalytic Enantioselective Acyl Transfer

Daniel Seidel*
Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA   Email: seidel@rutchem.rutgers.edu
› Author Affiliations
Further Information

Publication History

Received: 14 November 2013

Accepted: 03 December 2013

Publication Date:
27 January 2014 (online)


Abstract

This account details the development of a dual-catalysis approach and its application to the kinetic resolution of amines and other enantioselective acyl-transfer reactions. Anion recognition is an essential design element of these processes, which are enabled by the combined action of an achiral 4-(N,N-dimethylamino)pyridine (DMAP) derivative and a chiral anion receptor catalyst.

1 Introduction

2 Kinetic Resolution of Amines

2.1 Benzylic Amines

2.2 Propargylic Amines

2.3 Allylic Amines

2.4 Benzylic Amines Revisited

2.5 Racemic Diamines

3 Desymmetrization of meso-Diamines

4 Miscellaneous Acyl Transfer Reactions

4.1 Steglich Reaction

4.2 Reactions of Isoquinolines with Azlactones

4.3 Acylation of Silyl Ketene Acetals

5 Conclusions

 
  • References


    • For selected reviews on anion receptor chemistry, see:
    • 1a Gale PA. Acc. Chem. Res. 2006; 39: 465
    • 1b Kang SO, Begum RA, Bowman-James K. Angew. Chem. Int. Ed. 2006; 45: 7882
    • 1c Sessler JL, Gale PA, Cho W.-S. Anion Receptor Chemistry . Royal Society of Chemistry; Cambridge: 2006
    • 1d Li AF, Wang JH, Wang F, Jiang YB. Chem. Soc. Rev. 2010; 39: 3729
    • 1e Amendola V, Fabbrizzi L, Mosca L. Chem. Soc. Rev. 2010; 39: 3889
    • 1f Anion Coordination Chemistry . Bowman-James K, Bianchi A, García-España E. Wiley-VCH; Weinheim: 2011
    • 1g Wenzel M, Hiscock JR, Gale PA. Chem. Soc. Rev. 2012; 41: 480

      For selected reviews on chiral anion catalysis, see:
    • 2a Lacour J, Hebbe-Viton V. Chem. Soc. Rev. 2003; 32: 373
    • 2b Lacour J, Moraleda D. Chem. Commun. 2009; 7073
    • 2c Zhang Z, Schreiner PR. Chem. Soc. Rev. 2009; 38: 1187
    • 2d Beckendorf S, Asmus S, Mancheno OG. ChemCatChem 2012; 4: 926
    • 2e Avila EP, Amarante GW. ChemCatChem 2012; 4: 1713
    • 2f Phipps RJ, Hamilton GL, Toste FD. Nat. Chem. 2012; 4: 603
    • 2g Woods PA, Smith AD, Steed JW, Gale PA. In Supramolecular Chemistry: From Molecules to Nanomaterials 2012; Vol. 4: 1383
    • 2h Mahlau M, List B. Angew. Chem. Int. Ed. 2013; 52: 518
    • 2i Brak K, Jacobsen EN. Angew. Chem. Int. Ed. 2013; 52: 534
  • 3 Kotke M, Schreiner PR. Tetrahedron 2006; 62: 434
  • 4 Kotke M, Schreiner PR. Synthesis 2007; 779
  • 5 Taylor MS, Jacobsen EN. J. Am. Chem. Soc. 2004; 126: 10558
  • 6 Raheem IT, Thiara PS, Peterson EA, Jacobsen EN. J. Am. Chem. Soc. 2007; 129: 13404
    • 7a Reisman SE, Doyle AG, Jacobsen EN. J. Am. Chem. Soc. 2008; 130: 7198
    • 7b Klausen RS, Jacobsen EN. Org. Lett. 2009; 11: 887
    • 7c Zuend SJ, Jacobsen EN. J. Am. Chem. Soc. 2009; 131: 15358
    • 7d Xu H, Zuend SJ, Woll MG, Tao Y, Jacobsen EN. Science 2010; 327: 986
    • 7e Veitch GE, Jacobsen EN. Angew. Chem. Int. Ed. 2010; 49: 7332
    • 7f Knowles RR, Lin S, Jacobsen EN. J. Am. Chem. Soc. 2010; 132: 5030
    • 7g Brown AR, Kuo W.-H, Jacobsen EN. J. Am. Chem. Soc. 2010; 132: 9286
    • 7h Knowles RR, Jacobsen EN. Proc. Natl. Acad. Sci. U. S. A. 2010; 107: 20678
    • 7i Birrell JA, Desrosiers J.-N, Jacobsen EN. J. Am. Chem. Soc. 2011; 133: 13872
    • 7j Burns NZ, Witten MR, Jacobsen EN. J. Am. Chem. Soc. 2011; 133: 14578
    • 7k Beck EM, Hyde AM, Jacobsen EN. Org. Lett. 2011; 13: 4260
    • 7l Lee Y, Klausen RS, Jacobsen EN. Org. Lett. 2011; 13: 5564
    • 7m Lin S, Jacobsen EN. Nat. Chem. 2012; 4: 817
    • 7n Lalonde MP, McGowan MA, Rajapaksa NS, Jacobsen EN. J. Am. Chem. Soc. 2013; 135: 1891

      For other examples of catalytic processes that likely involve anion binding, see:
    • 8a Yamaoka Y, Miyabe H, Takemoto Y. J. Am. Chem. Soc. 2007; 129: 6686
    • 8b Martínez-García H, Morales D, Pérez J, Coady DJ, Bielawski CW, Gross DE, Cuesta L, Marquez M, Sessler JL. Organometallics 2007; 26: 6511
    • 8c Weil T, Kotke M, Kleiner CM, Schreiner PR. Org. Lett. 2008; 10: 1513
    • 8d Singh RP, Foxman BM, Deng L. J. Am. Chem. Soc. 2010; 132: 9558
    • 8e Opalka SM, Steinbacher JL, Lambiris BA, McQuade DT. J. Org. Chem. 2011; 76: 6503
    • 8f Zhang ZG, Lippert KM, Hausmann H, Kotke M, Schreiner PR. J. Org. Chem. 2011; 76: 9764
    • 8g Wang Y, Yu TY, Zhang HB, Luo YC, Xu PF. Angew. Chem. Int. Ed. 2012; 51: 12339
    • 8h Beckendorf S, Asmus S, Muck-Lichtenfeld C, Mancheno OG. Chem. Eur. J. 2013; 19: 1581
    • 8i Sawamura Y, Nakatsuji H, Sakakura A, Ishihara K. Chem. Sci. 2013; 4: 4181
    • 8j Schafer AG, Wieting JM, Fisher TJ, Mattson AE. Angew. Chem. Int. Ed. 2013; 52: 11321
    • 8k Kumar V, Mukherjee S. Chem. Commun. 2013; 49: 11203
    • 8l Borovika A, Tang P.-I, Klapman S, Nagorny P. Angew. Chem. 2013; 125: 13666
    • 8m Min C, Mittal N, Sun DX, Seidel D. Angew. Chem. Int. Ed. 2013; 52: 14084

      For selected reviews covering various aspects of asymmetric nucleophilic catalysis, acyl-transfer, and kinetic resolution, see:
    • 9a Fu GC. Acc. Chem. Res. 2000; 33: 412
    • 9b Spivey AC, Maddaford A, Redgrave AJ. Org. Prep. Proced. Int. 2000; 32: 331
    • 9c Eames J. Angew. Chem. Int. Ed. 2000; 39: 885
    • 9d Keith JM, Larrow JF, Jacobsen EN. Adv. Synth. Catal. 2001; 343: 5
    • 9e Vedejs E, Daugulis O, MacKay JA, Rozners E. Synlett 2001; 1499
    • 9f Jarvo ER, Miller SJ. Tetrahedron 2002; 58: 2481
    • 9g Dehli JR, Gotor V. Chem. Soc. Rev. 2002; 31: 365
    • 9h Robinson DE. J. E, Bull SD. Tetrahedron: Asymmetry 2003; 14: 1407
    • 9i France S, Guerin DJ, Miller SJ, Lectka T. Chem. Rev. 2003; 103: 2985
    • 9j Pellissier H. Tetrahedron 2003; 59: 8291
    • 9k Murugan R, Scriven EF. V. Aldrichimica Acta 2003; 36: 21
    • 9l Fu GC. Acc. Chem. Res. 2004; 37: 542
    • 9m Miller SJ. Acc. Chem. Res. 2004; 37: 601
    • 9n Tian S.-K, Chen Y, Hang J, Tang L, McDaid P, Deng L. Acc. Chem. Res. 2004; 37: 621
    • 9o Spivey AC, Arseniyadis S. Angew. Chem. Int. Ed. 2004; 43: 5436
    • 9p Vedejs E, Jure M. Angew. Chem. Int. Ed. 2005; 44: 3974
    • 9q Fogassy E, Nogradi M, Palovics E, Schindler J. Synthesis 2005; 1555
    • 9r Fogassy E, Nogradi M, Kozma D, Egri G, Palovics E, Kiss V. Org. Biomol. Chem. 2006; 4: 3011
    • 9s Wurz RP. Chem. Rev. 2007; 107: 5570
    • 9t Spivey AC, McDaid P In Enantioselective Organocatalysis: Reactions and Experimental Procedures . Dalko PI. Wiley-VCH; Weinheim: 2007
    • 9u Rendler S, Oestreich M. Angew. Chem. Int. Ed. 2008; 47: 248
    • 9v Denmark SE, Beutner GL. Angew. Chem. Int. Ed. 2008; 47: 1560
    • 9w Wills M. Angew. Chem. Int. Ed. 2008; 47: 4264
    • 9x Pellissier H. Tetrahedron 2008; 64: 1563
    • 9y Palomo C, Oiarbide M, López R. Chem. Soc. Rev. 2009; 38: 632
    • 9z Spivey AC, Arseniyadis S. Top. Curr. Chem. 2010; 291: 233
    • 9aa Marion N, Fu GC In Chiral Ferrocenes in Asymmetric Catalysis: Synthesis and Applications . Dai L.-X, Hou X.-L. Wiley-VCH; Weinheim: 2010
    • 9ab Kumar RR, Kagan HB. Adv. Synth. Catal. 2010; 352: 231
    • 9ac Müller CE, Schreiner PR. Angew. Chem. Int. Ed. 2011; 50: 6012

      For selected reviews on hydrogen-bonding catalysis, see:
    • 10a Schreiner PR. Chem. Soc. Rev. 2003; 32: 289
    • 10b Takemoto Y. Org. Biomol. Chem. 2005; 3: 4299
    • 10c Taylor MS, Jacobsen EN. Angew. Chem. Int. Ed. 2006; 45: 1520
    • 10d Connon SJ. Chem. Eur. J. 2006; 12: 5418
    • 10e Doyle AG, Jacobsen EN. Chem. Rev. 2007; 107: 5713
    • 10f Akiyama T. Chem. Rev. 2007; 107: 5744
    • 10g Yu X, Wang W. Chem. Asian J. 2008; 3: 516
    • 10h Hydrogen Bonding in Organic Synthesis . Pihko PM. Wiley-VCH; Weinheim: 2009
    • 10i Schenker S, Zamfir A, Freund M, Tsogoeva SB. Eur. J. Org. Chem. 2011; 2209

      For selected reviews on cooperative catalysis, see:
    • 11a Paull DH, Abraham CJ, Scerba MT, Alden-Danforth E, Lectka T. Acc. Chem. Res. 2008; 41: 655
    • 11b Shao Z, Zhang H. Chem. Soc. Rev. 2009; 38: 2745
    • 11c Zhong C, Shi X. Eur. J. Org. Chem. 2010; 2999
    • 11d Rueping M, Koenigs RM, Atodiresei I. Chem. Eur. J. 2010; 16: 9350
    • 11e Piovesana S, Scarpino Schietroma DM, Bella M. Angew. Chem. Int. Ed. 2011; 50: 6216
    • 11f Briere JF, Oudeyer S, Dalla V, Levacher V. Chem. Soc. Rev. 2012; 41: 1696
    • 11g Allen AE, MacMillan DW. C. Chem. Sci. 2012; 3: 633
    • 11h Wende RC, Schreiner PR. Green Chem. 2012; 14: 1821

      For selected reviews on enzymatic amine acylation, see:
    • 12a Azov VA In Science of Synthesis. . Vol. 40. Enders D. Thieme; Stuttgart: 2008: 419
    • 12b Höhne M, Bornscheuer UT. ChemCatChem 2009; 1: 42
    • 12c Turner NJ. Nat. Chem. Biol. 2009; 5: 567
    • 12d Gotor-Fernandez V, Gotor V. Curr. Opin. Drug Discovery Dev. 2009; 12: 784
    • 12e Lee JH, Han K, Kim M.-J, Park J. Eur. J. Org. Chem. 2010; 999
    • 13a Arai S, Bellemin-Laponnaz S, Fu GC. Angew. Chem. Int. Ed. 2001; 40: 234

    • See also:
    • 13b Arp FO, Fu GC. J. Am. Chem. Soc. 2006; 128: 14264
    • 13c Anstiss M, Nelson A. Org. Biomol. Chem. 2006; 4: 4135

      For selected examples of amine resolution with chiral acylating reagents, see:
    • 14a Yokomatsu T, Arakawa A, Shibuya S. J. Org. Chem. 1994; 59: 3506
    • 14b Kondo K, Kurosaki T, Murakami Y. Synlett 1998; 725
    • 14c Ie Y, Fu GC. Chem. Commun. 2000; 119
    • 14d Maezaki N, Furusawa A, Uchida S, Tanaka T. Tetrahedron 2001; 57: 9309
    • 14e Al-Sehemi AG, Atkinson RS, Fawcett J. J. Chem. Soc., Perkin Trans. 1 2002; 257
    • 14f Arseniyadis S, Valleix A, Wagner A, Mioskowski C. Angew. Chem. Int. Ed. 2004; 43: 3314
    • 14g Arseniyadis S, Subhash PV, Valleix A, Mathew SP, Blackmond DG, Wagner A, Mioskowski C. J. Am. Chem. Soc. 2005; 127: 6138
    • 14h Karnik AV, Kamath SS. Tetrahedron: Asymmetry 2008; 19: 45
    • 14i Kolleth A, Christoph S, Arseniyadis S, Cossy J. Chem. Commun. 2012; 48: 10511
    • 14j Kolleth A, Cattoen M, Arseniyadis S, Cossy J. Chem. Commun. 2013; 49: 9338
    • 15a Birman VB, Jiang H, Li X, Guo L, Uffman EW. J. Am. Chem. Soc. 2006; 128: 6536
    • 15b Yang X, Bumbu VD, Birman VB. Org. Lett. 2011; 13: 4755
    • 15c Yang X, Bumbu VD, Liu P, Li X, Jiang H, Uffman EW, Guo L, Zhang W, Jiang X, Houk KN, Birman VB. J. Am. Chem. Soc. 2012; 134: 17605
  • 16 Fowler BS, Mikochik PJ, Miller SJ. J. Am. Chem. Soc. 2010; 132: 2870
    • 17a Binanzer M, Hsieh S.-Y, Bode JW. J. Am. Chem. Soc. 2011; 133: 19698
    • 17b Hsieh S.-Y, Binanzer M, Kreituss I, Bode JW. Chem. Commun. 2012; 48: 8892

      For other selected catalytic approaches to the kinetic resolution of amines, see:
    • 18a Arnold K, Davies B, Herault D, Whiting A. Angew. Chem. Int. Ed. 2008; 47: 2673
    • 18b Hou XL, Zheng BH. Org. Lett. 2009; 11: 1789
    • 18c Reznichenko AL, Hampel F, Hultzsch KC. Chem. Eur. J. 2009; 15: 12819
    • 18d Charville H, Jackson D, Hodges G, Whiting A. Chem. Commun. 2010; 46: 1813
  • 19 De CK, Klauber EG, Seidel D. J. Am. Chem. Soc. 2009; 131: 17060

    • For selected reports on the formation, nature, and reactivity of acylpyridinium salts, see:
    • 20a Heinrich MR, Klisa HS, Mayr H, Steglich W, Zipse H. Angew. Chem. Int. Ed. 2003; 42: 4826
    • 20b Xu S, Held I, Kempf B, Mayr H, Steglich W, Zipse H. Chem. Eur. J. 2005; 11: 4751
    • 20c Held I, Villinger A, Zipse H. Synthesis 2005; 1425
    • 20d Fischer CB, Xu SJ, Zipse H. Chem. Eur. J. 2006; 12: 5779
    • 20e Brotzel F, Kempf B, Singer T, Zipse H, Mayr H. Chem. Eur. J. 2007; 13: 336
    • 20f Lutz V, Glatthaar J, Würtele C, Serafin M, Hausmann H, Schreiner PR. Chem. Eur. J. 2009; 15: 8548
    • 20g Larionov E, Achrainer F, Humin J, Zipse H. ChemCatChem 2012; 4: 559
    • 20h Larionov E, Mahesh M, Spivey AC, Wei Y, Zipse H. J. Am. Chem. Soc. 2012; 134: 9390

      For selected reviews on DMAP catalysis, see:
    • 21a Höfle G, Steglich W, Vorbrüggen H. Angew. Chem. Int. Ed. Engl. 1978; 17: 569
    • 21b De Rycke N, Couty F, David OR. P. Chem. Eur. J. 2011; 17: 12852
    • 22a Sohtome Y, Tanatani A, Hashimoto Y, Nagasawa K. Tetrahedron Lett. 2004; 45: 5589
    • 22b Sohtome Y, Takemura N, Takagi R, Hashimoto Y, Nagasawa K. Tetrahedron 2008; 64: 9423
  • 23 The s-factor is defined as the rate of the faster reacting enantiomer/rate of the slower reacting enantiomer. The s-factors were calculated according to: Kagan HB, Fiaud JC. Top. Stereochem. 1988; 18: 249
  • 24 Klauber EG, De CK, Shah TK, Seidel D. J. Am. Chem. Soc. 2010; 132: 13624
  • 25 For a study on the influence of the 3,5-bis(trifluoromethyl)phenyl group, see: Lippert KM, Hof K, Gerbig D, Ley D, Hausmann H, Guenther S, Schreiner PR. Eur. J. Org. Chem. 2012; 5919

    • Self-aggregation of organocatalysts can have a dramatic impact on enantioselectivities. For examples, see:
    • 26a Jang HB, Rho HS, Oh JS, Nam EH, Park SE, Bae HY, Song CE. Org. Biomol. Chem. 2010; 8: 3918
    • 26b Tárkányi G, Király P, Soós T, Varga S. Chem. Eur. J. 2012; 18: 1918
  • 27 Klauber EG, Mittal N, Shah TK, Seidel D. Org. Lett. 2011; 13: 2464
  • 28 Mittal N, Sun DX, Seidel D. Org. Lett. 2012; 14: 3084
  • 29 Spivey et al. have also observed changes in selectivity upon modification of alkyl groups on an axially chiral DMAP analogue; see: Spivey AC, Leese DP, Zhu FJ, Davey SG, Jarvest RL. Tetrahedron 2004; 60: 4513
    • 30a Singh S, Das G, Singh OV, Han H. Org. Lett. 2007; 9: 401
    • 30b De Rycke N, Berionni G, Couty F, Mayr H, Goumont R, David OR. P. Org. Lett. 2011; 13: 530

      For reports on the reactivity of these nucleophilic catalysts, see:
    • 31a Kobayashi M, Okamoto S. Tetrahedron Lett. 2006; 47: 4347
    • 31b Birman VB, Li X, Han Z. Org. Lett. 2007; 9: 37
    • 31c Maji B, Joannesse C, Nigst TA, Smith AD, Mayr H. J. Org. Chem. 2011; 76: 5104
  • 32 Ruble JC, Fu GC. J. Org. Chem. 1996; 61: 7230
  • 33 Schreiner PR, Wittkopp A. Org. Lett. 2002; 4: 217
  • 34 Min C, Mittal N, De CK, Seidel D. Chem. Commun. 2012; 48: 10853
    • 35a Zhang ZX, Yin ZW, Meanwell NA, Kadow JF, Wang T. Org. Lett. 2003; 5: 3399
    • 35b Verma SK, Acharya BN, Kaushik MP. Org. Lett. 2010; 12: 4232
  • 36 De CK, Seidel D. J. Am. Chem. Soc. 2011; 133: 14538
    • 37a Steglich W, Höfle G. Angew. Chem. Int. Ed. Engl. 1969; 8: 981
    • 37b Steglich W, Höfle G. Tetrahedron Lett. 1970; 4727

      For selected reviews on azlactone rearrangements and related reactions, see:
    • 38a Fisk JS, Mosey RA, Tepe JJ. Chem. Soc. Rev. 2007; 36: 1432
    • 38b Nasveschuk CG, Rovis T. Org. Biomol. Chem. 2008; 6: 240
    • 38c Mosey RA, Fisk JS, Tepe JJ. Tetrahedron: Asymmetry 2008; 19: 2755
    • 38d Moyano A, El-Hamdouni N, Atlamsani A. Chem. Eur. J. 2010; 16: 5260
    • 38e Alba AN. R, Rios R. Chem. Asian J. 2011; 6: 720
  • 39 De CK, Mittal N, Seidel D. J. Am. Chem. Soc. 2011; 133: 16802
  • 40 Okino T, Hoashi Y, Takemoto Y. J. Am. Chem. Soc. 2003; 125: 12672
    • 41a Ruble JC, Fu GC. J. Am. Chem. Soc. 1998; 120: 11532
    • 41b Shaw SA, Aleman P, Vedejs E. J. Am. Chem. Soc. 2003; 125: 13368
    • 42a Takamura M, Funabashi K, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2000; 122: 6327
    • 42b Takamura M, Funabashi K, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2001; 123: 6801
    • 42c Alexakis A, Amiot F. Tetrahedron: Asymmetry 2002; 13: 2117
    • 42d Taylor MS, Tokunaga N, Jacobsen EN. Angew. Chem. Int. Ed. 2005; 44: 6700
    • 42e Black DA, Beveridge RE, Arndtsen BA. J. Org. Chem. 2008; 73: 1906 ; See also ref. 8a