Synthesis 2014; 46(04): 479-488
DOI: 10.1055/s-0033-1340465
paper
© Georg Thieme Verlag Stuttgart · New York

Efficient Chemoenzymatic Synthesis of (RS)-, (R)-, and (S)-Bunitrolol

Linga Banotha, Bhukya Chandarraoa, Brahmam Pujalab, Asit K. Chakraborti*b, U. C. Banerjee*a
  • aDepartment of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar-160062, Punjab, India   Email: ucbanerjee@niper.ac.in
  • bDepartment of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar-160062, Punjab, India   Email: akchakraborti@niper.ac.in
Further Information

Publication History

Received: 10 September 2013

Accepted after revision: 25 November 2013

Publication Date:
11 December 2013 (eFirst)

Abstract

A new chemical and the first chemoenzymatic synthesis of β-adrenergic receptor blocking agent bunitrolol is reported in racemic (RS) and enantioenriched forms (R and S). The intermediates (R)- and (S)-1-chloro-3-(2-cyanophenoxy)propan-2-ol intermediates were synthesized from the corresponding racemic alcohol through enzymatic kinetic resolution. The commercial available lipases PS-C and CCL exhibited complementary enantioselectivity during transesterification of the racemic alcohol with vinyl acetate affording the (R)-alcohol along with (S)-acetate and the (S)-alcohol along with (R)-acetate, respectively, and represent an example of enzymatic switch for reversal of enantioselectivity. The effects of various reaction parameters, such as temperature, time, substrate and enzyme concentration, and reaction medium, on the activity and enantioselectivity were optimized. The (R)- and (S)-alcohols were converted into (S)-and and (R)-bunitrolol, respectively, by treatment with tert-butylamine. The (R)- and (S)-acetates, obtained enzymatically were deacetylated to the corresponding alcohol by chemical hydrolysis and further converted into (S)-and and (R)-bunitrolol by chemical means. This is the first chemoenzymatic synthesis of both of the enantiomers of the drug. (RS)-, (R)-, and (S)-Bunitrolol were also synthesized following the ‘all chemical’ routes from (RS)-, (R)-, and (S)-epichlorohydrin via the corresponding (RS)-, (S)-, and (R)-2-cyanoglycidyl ether and the (RS)-, (R)-, and (S)-1-chloro-3-(2-cyanophenoxy)propan-2-ol intermediates with improved overall yields and better enantiomeric excesses compared to the reported processes.

Supporting Information

 
  • References

  • 1 WHO Report 2003 on Global strategy on diet, physical activity, and health.
  • 2 Connolly ME, Kersting F, Dollery CT. Prog. Cardiovasc. Dis. 1976; 19: 203
    • 3a Shanks RG, Wood TM, Dornhorst AC, Clark ML. Nature (London) 1966; 212: 88
    • 3b Triggle DJ In Burger’s Medicinal Chemistry . 4th ed.; Wolff MS. Wiley-Interscience; New York; 1981: 225
    • 3c Cree JD, Geukens H, Leempoels J, Verhaegen H. Drug Dev. Res. 1986; 8: 109
    • 4a Owen DA. L, Marsden CD. Lancet 1965; 286: 1259
    • 4b Granville-Grossman KL, Turner P. Lancet 1966; 287: 788
    • 4c Hadden DR, Montgomery DA, Shanks RG, Weaver JA. Lancet 1968; 292: 852
    • 4d Gas D, Kregar M. Ann. Intern. Med. 1970; 70: 985
    • 4e Grosz HJ. Lancet 1972; 300: 564
    • 4f Weber RB, Reinmuth OM. Neurology 1972; 22: 366
    • 4g Morelli HF. Ann. Intern. Med. 1973; 78: 913
    • 4h Young RR, Growdon JH, Shahani BT. N. Engl. J. Med. 1975; 293: 950
    • 5a Ulrych M, Frohlich ED, Dustan HP, Page IH. Circulation 1968; 37: 411
    • 5b Tarazi RC, Dustan HP. Am. J. Cardiol. 1972; 29: 633
    • 6a Farmer JB, Kennedy I, Levy GP, Marshall RJ. Br. J. Pharmacol. 1972; 45: 660
    • 6b Prichard BN. C, Thompson FO, Boakes AJ, Joekes AM. Clin. Sci. Mol. Med., Suppl. 1975; 48: 97s
    • 6c Mehta J, Cohn JN. Circulation 1977; 55: 370
    • 7a Engelhardt A, Traunecker W. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1969; 263: 203
    • 7b Mylecharane EJ, Raper C. Eur. J. Pharmacol. 1971; 16: 14
    • 7c Cheymol G, Honnorat C, Schmitt H. Eur. J. Pharmacol. 1972; 17: 341
    • 7d Nayler WG, Tay J. J. Pharmacol. Exp. Ther. 1972; 180: 302
  • 8 Satoh K, Nunoki K, Goto T, Taira N. J. Cardiovasc. Pharmacol. 1985; 7: 508

    • Route A:
    • 9a Sayyed IA, Thakur VV, Nikalje MD, Dewakar GK, Kotkar SP, Sudalai A. Tetrahedron 2005; 61: 2831
    • 9b Bredikhin AA, Bredikhina ZA, Zakharychev DV, Akhatova FS, Krivolapov DB, Litvinov IA. Mendeleev Commun. 2006; 16: 245

    • Route B:
    • 9c Bredikhina ZA, Akhatova FS, Zakharychev DV, Bredikhin AA. Tetrahedron: Asymmetry 2008; 19: 1430
    • 10a Pujala B, Rana S, Chakraborti AK. J. Org. Chem. 2011; 76: 8768
    • 10b Shivani Pujala B, Chakraborti AK. J. Org. Chem. 2007; 72: 3713
    • 10c Chakraborti AK, Kondaskar A, Rudrawar S. Tetrahedron 2004; 60: 9085
    • 10d Chakraborti AK, Rudrawar S, Kondaskar A. Eur. J. Org. Chem. 2004; 3597
    • 10e Chakraborti AK, Rudrawar S, Kondaskar A. Org. Biomol. Chem. 2004; 2: 1277
    • 10f Chakraborti AK, Kondaskar A. Tetrahedron Lett. 2003; 44: 8315
    • 10g For a review: Schneider C. Synthesis 2006; 3919
  • 11 Narimatsu S, Kato R, Horie T, Ono S, Tsutsui M, Yabusaki Y, Ohmori S, Kitada M, Ichioka T, Shimada N. Chirality 1999; 11: 1
    • 12a Mehvar R, Brocks DR. J. Pharm. Pharm. Sci. 2001; 4: 185
    • 12b Nathanson JA. J. Pharmacol. Exp. Ther. 1988; 245: 94
    • 12c Narimatsu S, Mizukami T, Huang Y, Masubuchi Y, Suzuki T. J. Pharm. Pharmacol. 1996; 48: 1185
  • 13 Masuda K, Tamagake K, Katsu T, Torigoe F, Saito K, Hanioka N, Yamano S, Yamamoto S, Narimatsu S. Chirality 2006; 18: 167
  • 14 Alfonsi K, Colberg J, Dunn PJ, Fevig T, Jennings S, Johnson TA, Kleine HP, Knight C, Nagy MA, Perry A, Stefaniak M. Green Chem. 2008; 10: 31
  • 15 Roughley SD, Jordan AM. J. Med. Chem. 2011; 54: 3451
  • 16 Clouthier CM, Pelletier JN. Chem. Soc. Rev. 2012; 41: 1585
  • 17 Kaler A, Meena VS, Singh M, Pujala B, Chakraborti AK, Banerjee UC. Tetrahedron Lett. 2011; 52: 5355
  • 18 Bajwa JS, Anderson RC. Tetrahedron Lett. 1991; 32: 3021
  • 19 Chakraborti AK, Gulhane R. Synlett 2004; 627
    • 20a Ding W, Li M, Dai R, Deng Y. Tetrahedron: Asymmetry 2012; 23: 1376
    • 20b Bottalla A.-L, Queyroy S, Azzi-Schue N, Vanthuyne N, Gastaldi S, Bertrand MP, Gil C. Tetrahedron: Asymmetry 2009; 20: 2823
    • 20c Okudomi M, Nogawa M, Chihara N, Kaneko M, Matsumoto K. Tetrahedron Lett. 2008; 49: 6642
    • 20d Barnier JP, Rayssac V, Morisson V, Blanco L. Tetrahedron Lett. 1997; 38: 8503
    • 20e Chen C.-S, Fujimoto Y, Girdaukas G, Sih CJ. J. Am. Chem. Soc. 1982; 104: 7294
    • 20f Straathof AJ. J, Jongejan JA. Enzyme Microb. Technol. 1997; 21: 559
    • 21a Khmelnitsky YL, Rich JO. Curr. Opin. Chem. Biol. 1999; 3: 47
    • 21b Hudson EP, Eppler RK, Clark DS. Curr. Opin. Biotechnol. 2005; 16: 637
  • 22 Dordick JS. Enzyme Microb. Technol. 1989; 11: 194
    • 23a Laane C, Boeren S, Vos K, Veeger C. Biotechnol. Bioeng. 1987; 30: 81
    • 23b Klibanov AM. Nature (London) 2001; 409: 241
    • 23c Parida S, Dordick JS. J. Am. Chem. Soc. 1991; 113: 2253
    • 24a Paravidino M, Hanefeld U. Green Chem. 2011; 13: 2651
    • 24b Egri G, Baitz-Gacs E, Poppe L. Tetrahedron: Asymmetry 1996; 7: 1437
    • 25a Banoth L, Singh M, Tekewe A, Banerjee UC. Biocatal. Biotransform. 2009; 27: 263
    • 25b Banoth L, Narayan TK, Banerjee UC. Tetrahedron: Asymmetry 2012; 23: 1272
    • 25c Banoth L, Narayan TK, Pujala B, Chakraborti AK, Banerjee UC. Tetrahedron: Asymmetry 2012; 23: 1564
  • 26 Khan FA, Dash J, Jain D, Prabhudas B. J. Chem. Soc., Perkin Trans. 1 2001; 3132
  • 27 Zaidlewicz M, Tafelska-Kaczmarek A, Prewysz-Kwinto A. Tetrahedron: Asymmetry 2005; 16: 3205