Synthesis 2013; 45(24): 3305-3324
DOI: 10.1055/s-0033-1340061
review
© Georg Thieme Verlag Stuttgart · New York

Direct Carboxylative Reactions for the Transformation of Carbon Dioxide into Carboxylic Acids and Derivatives

Xiaohua Cai*
College of Chemistry and Environmental Science, Guizhou Minzu University, Guiyang 550025, P. R. of China   Fax: +86(851)3610313   Email: caixh1111@163.com
,
Bing Xie
College of Chemistry and Environmental Science, Guizhou Minzu University, Guiyang 550025, P. R. of China   Fax: +86(851)3610313   Email: caixh1111@163.com
› Author Affiliations
Further Information

Publication History

Received: 24 June 2013

Accepted after revision: 29 July 2013

Publication Date:
22 November 2013 (online)


Abstract

Carbon dioxide is the ideal one-carbon source for organic synthesis because of its abundance, lack of toxicity, and potential as a renewable resource, but is limited by its high stability and low reactivity. The carboxylation of carbon nucleophiles with carbon dioxide to form new carbon–carbon bonds is therefore an attractive method for the synthesis of carboxylic acids and derivatives, which are in turn valuable organic products. Thus, the designing of mild methods to catalytically activate carbon dioxide and form carbon–carbon bonds is a challenge that is of both academic and practical importance. This review is focused on the direct carboxylative reaction for the transformation of carbon dioxide into carboxylic acids and derivatives from the carboxylation of carbon nucleophiles, reductive hydrocarboxylation of unsaturated compounds, carboxylation via oxidative cycloaddition, carboxylation of carbon–hydrogen bonds, and electrochemical carboxylation.

1 Introduction

2 Carboxylation of Carbon Nucleophiles

2.1 Carboxylation of Organotin Reagents

2.2 Carboxylation of Organoboron Reagents

2.3 Carboxylation of Organozinc Reagents

2.4 Carboxylation of Other Nucleophiles

3 Reductive Hydrocarboxylation of Unsaturated Compounds

4 Carboxylation via Oxidative Cycloaddition

5 Carboxylation of Carbon–Hydrogen Bonds

5.1 Carboxylation of Terminal Alkynes

5.2 Carboxylation of sp2 Carbon–Hydrogen Bonds

5.3 Carboxylation of sp3 Carbon–Hydrogen Bonds

6 Electrochemical Carboxylation

7 Conclusion

 
  • References

    • 1a Omae I. Catal. Today 2006; 115: 33
    • 1b Sakakura T, Kohno K. Chem. Commun. 2009; 1312
    • 1c Yang Z.-Z, He L.-N, Gao J, Liu A.-H, Yu B. Energy Environ. Sci. 2012; 5: 6602

      For recent reviews on the use carbon dioxide for chemical transformations, see:
    • 2a Sakakura T, Choi J.-C, Yasuda H. Chem. Rev. 2007; 107: 2365
    • 2b Aresta M, Dibenedotto A. Dalton Trans. 2007; 2975
    • 2c Mikkelsen M, Jørgensen M, Krebs FC. Energy Environ. Sci. 2010; 3: 43
    • 2d Riduan SN, Zhang Y. Dalton Trans. 2010; 39: 3347
    • 2e Huang K, Sun C.-L, Shi Z.-J. Chem. Soc. Rev. 2011; 40: 2435
    • 2f Cokoja M, Bruckmeier C, Rieger B, Herrmann WA, Kuehn FE. Angew. Chem. Int. Ed. 2011; 50: 8510
    • 2g Martín R, Kleij AW. ChemSusChem 2011; 4: 1259
    • 2h Tsuji Y, Fujihara T. Chem. Commun. 2012; 48: 9956
  • 3 Yu DY, Zhang YG. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 20184
  • 4 Kobayashi K, Kondo Y. Org. Lett. 2009; 11: 2035
  • 5 Ukai K, Aoki M, Takaya J, Iwasawa N. J. Am. Chem. Soc. 2006; 128: 8706
  • 6 Shi M, Nicholas M. J. Am. Chem. Soc. 1997; 119: 5057
  • 7 Johansson R, Wendt OF. Dalton Trans. 2007; 488
  • 8 Wu J, Hazari N. Chem. Commun. 2011; 47: 1069
  • 9 Mita T, Sugawara M, Hasegawa H, Sato Y. J. Org. Chem. 2012; 77: 2159
  • 10 Ohishi T, Nishiura M, Hou ZM. Angew. Chem. Int. Ed. 2008; 47: 5792
  • 11 Correa A, Martín R. Angew. Chem. Int. Ed. 2009; 48: 6201
  • 12 Ohishi T, Zhang L, Nishiura M, Hou ZM. Angew. Chem. Int. Ed. 2011; 50: 8114
  • 13 Zhang L, Cheng JH, Carry B, Hou ZM. J. Am. Chem. Soc. 2012; 134: 14314
  • 14 Ohmiya H, Tanabe M, Sawamura M. Org. Lett. 2011; 13: 1086
  • 15 Fujihara T, Tani Y, Semba K, Terao J, Tsuji YC. Angew. Chem. Int. Ed. 2012; 51: 11487
  • 16 Yeung CS, Dong VM. J. Am. Chem. Soc. 2008; 130: 7826
  • 17 Ochiai H, Jang M, Hirano K, Yorimitsu H, Oshima K. Org. Lett. 2008; 10: 2681
  • 18 Bernhardt S, Metzger A, Knochel P. Synthesis 2010; 3802
  • 19 Metzger A, Bernhardt S, Manolikakes G, Knochel P. Angew. Chem. Int. Ed. 2010; 49: 4665
  • 20 Wanklyn JA. Liebigs Ann. 1858; 107: 125
  • 21 DePasquale RJ, Tamborski C. J. Org. Chem. 1969; 34: 1736
  • 22 Ebert GW, Juda WL, Kosakowski RH, Ma B, Dong LM, Cummings KE, Phelps MV. B, Mostafa AE, Luo JY. J. Org. Chem. 2005; 70: 4314
  • 23 Eghbali N, Eddy J, Anastas PT. J. Org. Chem. 2008; 73: 6932
  • 24 Correa A, Martín R. J. Am. Chem. Soc. 2009; 131: 15974
  • 25 Fujihara T, Nogi K, Xu TH, Terao J, Tsuji Y. J. Am. Chem. Soc. 2012; 134: 9106
  • 26 Kobayashi K, Nagaoka T, Shirai Y, Miyatani W, Yokoi Y, Konishi HO. Helv. Chim. Acta 2012; 95: 191
  • 27 León T, Correa A, Martin R. J. Am. Chem. Soc. 2013; 135: 1221
    • 28a Carmona E, Paneque M, Poveda ML. Polyhedron 1989; 8: 285
    • 28b Carmona E, Marin JM, Paneque M, Poveda ML. Organometallics 1987; 6: 1757
  • 29 Matsubara R, Gutierrez AC, Jamison TF. J. Am. Chem. Soc. 2011; 133: 19020
  • 30 Wu F, Lu W, Qian Q, Ren Q, Gong H. Org. Lett. 2012; 14: 3044
  • 31 Feng XJ, Sun AL, Zhang S, Yu XQ, Bao M. Org. Lett. 2013; 15: 108
  • 32 Williams CM, Johnson JB, Rovis T. J. Am. Chem. Soc. 2008; 130: 14936
  • 33 Li S, Yuan W, Ma S. Angew. Chem. Int. Ed. 2011; 50: 2578
  • 34 Fujihara T, Xu T, Semba K, Terao J, Tsuji Y. Angew. Chem. Int. Ed. 2011; 50: 523
  • 35 Zhang YG, Riduan SN. Angew. Chem. Int. Ed. 2011; 50: 6210
    • 36a Burkhart G, Hoberg H. Angew. Chem. Int. Ed. 1982; 21: 76
    • 36b Hoberg H, Peres Y, Krüger C, Tsay Y.-H. Angew. Chem. Int. Ed. 1987; 26: 771
    • 37a Takimoto M, Mori M. J. Am. Chem. Soc. 2001; 123: 2895
    • 37b Takimoto M, Shimizu K, Mori M. Org. Lett. 2001; 3: 3345
    • 37c Takimoto M, Kawamura M, Mori M. Org. Lett. 2003; 5: 2599
    • 37d Takimoto M, Kawamura M, Mori M. Synthesis 2004; 791
    • 37e Takimoto M, Nakamura Y, Kimura K, Mori M. J. Am. Chem. Soc. 2004; 126: 5956
  • 38 Aoki M, Kaneko M, Izumi S, Ukai K, Iwasawa N. Chem. Commun. 2004; 2568
    • 39a Vettel S, Vaupel A, Knochel P. Tetrahedron Lett. 1995; 36: 1023
    • 39b Klement I, Lütjens H, Knochel P. Tetrahedron Lett. 1995; 36: 3161
  • 40 Takaya J, Iwasawa N. J. Am. Chem. Soc. 2008; 130: 15254
  • 41 Aresta M, Nobile CF, Albano VG, Forni E, Manassero M. J. Chem. Soc., Chem. Commun. 1975; 636
  • 42 Greenhalgh MD, Thomas SP. J. Am. Chem. Soc. 2012; 134: 11900
  • 43 Dai W.-L, Luo S.-L, Yin S.-F, Au C.-T. Appl. Catal. A: Gen. 2009; 366: 2
  • 44 North M, Pasquale R, Young C. Green Chem. 2010; 12: 1514
  • 45 Yoshida M, Murao T, Sugimoto K, Ihara M. Synlett 2007; 575
  • 46 Bai DS, Jing HW, Wang GJ. Appl. Organomet. Chem. 2012; 26: 600
  • 47 Liu X, Cao CS, Li YF, Guan P, Yang LG, Shi YH. Synlett 2012; 23: 1343
  • 48 Dou X.-Y, He L.-N, Yang Z.-Z, Wang J.-L. Synlett 2010; 2159
  • 49 Ueno A, Kayaki Y, Ikariya T. Green Chem. 2013; 15: 425
    • 50a Hashiguchi BG, Bischof SM, Konnick MM, Periana RA. Acc. Chem. Res. 2012; 45: 885
    • 50b Wencel-Delord J, Dröge T, Liu F, Glorius F. Chem. Soc. Rev. 2011; 40: 4740
    • 50c Arockiam PB, Bruneau C, Dixneuf PH. Chem. Rev. 2012; 112: 5879
  • 51 Manjolinho F, Arndt M, Gooßen K, Gooßen LJ. ACS Catal. 2012; 2: 2014
  • 52 Yu DY, Zhang YG. Green Chem. 2011; 13: 1275
  • 53 Zhang X, Zhang W.-Z, Ren X, Zhang L.-L, Lu X.-B. Org. Lett. 2011; 13: 2402
    • 54a Yu M, Skouta R, Zhou L, Jiang H.-F, Yao X, Li C.-J. J. Org. Chem. 2009; 74: 3378
    • 54b Li C.-J. Acc. Chem. Res. 2010; 43: 581
  • 55 Arndt M, Risto E, Krause T, Gooßen LJ. ChemCatChem 2012; 4: 484
  • 56 Yu DY, Tan MX, Zhang YG. Adv. Synth. Catal. 2012; 354: 969
  • 57 Inamoto K, Asano N, Kobayashi K, Yonemoto M, Kondo Y. Org. Biomol. Chem. 2012; 10: 1514
  • 58 Ackermann L. Angew. Chem. Int. Ed. 2011; 50: 3842
  • 59 Gaillard S, Cazin CS. J, Nolan SP. Acc. Chem. Res. 2012; 45: 778
    • 60a Langer J, Fabra MJ, García-Orduña P, Lahoz FJ, Oro LA. Chem. Commun. 2008; 4822
    • 60b Langer J, Fabra MJ, García-Orduña P, Lahoz FJ, Görls H, Oro LA, Westerhausen M. Dalton Trans. 2010; 39: 7813
  • 61 Vechorkin O, Hirt N, Hu XL. Org. Lett. 2010; 12: 3567
  • 62 Zhang L, Cheng JH, Ohishi T, Hou ZM. Angew. Chem. Int. Ed. 2010; 49: 8670
  • 63 Inomata H, Ogata K, Fukuzawa S, Hou ZM. Org. Lett. 2012; 14: 3986
  • 64 Boogaerts II. F, Nolan SP. C. J. Am. Chem. Soc. 2010; 132: 8858
  • 65 Yoo W.-J, Capdevila MG, Du XW, Kobayashi SB. Org. Lett. 2012; 14: 5326
  • 66 Nemoto K, Onozawa S, Egusa N, Morohashi N, Hattori TC. Tetrahedron Lett. 2009; 50: 4512
  • 67 Mizuno H, Takaya J, Iwasawa N. J. Am. Chem. Soc. 2011; 133: 1251
  • 68 Nemoto K, Yoshida H, Egusa N, Morohashi N, Hattori T. J. Org. Chem. 2010; 75: 7855
  • 69 Nair V, Varghese V, Paul RR, Jose A, Sinu CR, Menon R. Org. Lett. 2010; 12: 2653
  • 70 Beckman EJ, Munshi P. Green Chem. 2011; 13: 376
  • 71 Mita T, Michigami K, Sato Y. Org. Lett. 2012; 14: 3462
  • 72 Zhang K, Wang H, Zhao S.-F, Niu D.-F, Lu J.-X. J. Electroanal. Chem. 2009; 630: 35
  • 73 Yamauchi Y, Sakai K, Fukuhara T, Hara S, Senboku H. Synthesis 2009; 3375
  • 74 Senboku H, Michinishi J.-Y, Hara S. Synlett 2011; 1567
  • 75 Feng QJ, Huang KL, Liu SQ, Wang XY. Electrochim. Acta 2010; 55: 5741
  • 76 Feng QJ, Huang KL, Liu SQ, Yu JG, Liu FF. Electrochim. Acta 2011; 56: 5137
  • 77 Senboku H, Yamauchi Y, Kobayashi N, Fukui A, Hara S. Electrochim. Acta 2012; 82: 450