Synlett 2013; 24(19): 2492-2505
DOI: 10.1055/s-0033-1339874
account
© Georg Thieme Verlag Stuttgart · New York

Visible-Light-Induced Photoredox Catalysis: An Easy Access to Green Radical Chemistry

Takashi Koike*
Chemical Resources Laboratory, Tokyo Institute of Technology, R1-27, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan   Fax: +81(45)9245230   Email: koike.t.ad@m.titech.ac.jp   Email: makita@res.titech.ac.jp
,
Munetaka Akita*
Chemical Resources Laboratory, Tokyo Institute of Technology, R1-27, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan   Fax: +81(45)9245230   Email: koike.t.ad@m.titech.ac.jp   Email: makita@res.titech.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 01 August 2013

Accepted after revision: 29 August 2013

Publication Date:
16 October 2013 (online)


Abstract

Photoredox catalysis by well-known ruthenium(II) polypyridine complexes and appropriate cyclometalated iridium(III) derivatives is a useful tool for redox reactions in synthetic chemistry, because these materials can effectively catalyze single-electron-transfer (SET) processes by irradiation with visible light. This provides a new strategy for efficient and selective radical reactions. We have developed several photocatalytic reactions in which organic radicals are generated by photoredox catalysis and which have remarkable merits in terms of green and sustainable chemistry.

1 Introduction

2 Photoredox Cycles of [Ru(bpy)3]2+ and Cyclometalated Iridium Complexes

3 Radical Reactions that Occur Through a Reductive Quenching Cycle

3.1 Oxyamination of Enamines

3.2 Tin-Free Giese-Type Reactions Through Oxidation of Organoborates

4 Radical Reactions Through an Oxidative Quenching Cycle

4.1 Two-Electron Transfer Process Mediated by Duroquinone: Oxidative Coupling of an Enamine with a Silyl Enol Ether

4.2 Radical Trifluoromethylation of Alkenes

5 Conclusions and Outlook

 
  • References

  • 1 Encyclopedia of Radicals in Chemistry, Biology and Materials . Vols. 1–4. Chatgilialoglu C, Studer A. Wiley; Chichester: 2012

    • For selected reviews on sunlight-driven reactions and photocatalysis for synthetic methods, see:
    • 2a Esser P, Pohlmann B, Scharf H.-D. Angew. Chem. Int. Ed. Engl. 1994; 33: 2009
    • 2b Oelgemöller M, Healy N, de Oliveria L, Jung C, Mattay J. Green Chem. 2006; 8: 831
    • 2c Oelgemöller M, Jung C, Mattay J. Pure Appl. Chem. 2007; 79: 1939
    • 2d Fagnoni M, Dondi D, Ravelli D, Albini A. Chem. Rev. 2007; 107: 2725
    • 2e Protti S, Fagnoni M. Photochem. Photobiol. Sci. 2009; 8: 1499
    • 2f Ravelli D, Dondi D, Fagnoni M, Albini A. Chem. Soc. Rev. 2009; 38: 1999
    • 2g Inagaki A, Akita M. Coord. Chem. Rev. 2010; 254: 1220
    • 2h Ravelli D, Fagnoni M. ChemCatChem 2012; 4: 169
    • 2i Ravelli D, Fagnoni M, Albini A. Chem. Soc. Rev. 2013; 42: 97
    • 2j Fukuzumi S, Ohkubo K. Chem. Sci. 2013; 4: 561
  • 3 Handbook of Synthetic Photochemistry . Albini A, Fagnoni M. Wiley-VCH; Weinheim: 2010
    • 4a Inagaki A, Edure S, Yatsuda S, Akita M. Chem. Commun. 2005; 5468
    • 4b Osawa M, Nagai H, Akita M. Dalton Trans. 2007; 827
    • 4c Inagaki A, Yatsuda S, Edure S, Suzuki A, Takahashi T, Akita M. Inorg. Chem. 2007; 46: 2432
    • 4d Inagaki A, Nakagawa H, Akita M, Inoue K, Sakai M, Fujii M. Dalton Trans. 2008; 6709
    • 4e Saita T, Nitadori H, Inagaki A, Akita M. J. Organomet. Chem. 2009; 694: 3125
    • 4f Murata K, Ito M, Inagaki A, Akita M. Chem. Lett. 2010; 39: 915
    • 4g Nitadori H, Takahashi T, Inagaki A, Akita M. Inorg. Chem. 2012; 51: 51
    • 4h Murata K, Araki M, Inagaki A, Akita M. Dalton Trans. 2013; 42: 6989
    • 4i Murata K, Inagaki A, Akita M, Halet J.-F, Costuas K. Inorg. Chem. 2013; 52: 8030

      For selected pioneering works on photoredox catalysis, see:
    • 5a Hedstrand DM, Kruizinga WH, Kellog RM. Tetrahedron Lett. 1978; 19: 1255
    • 5b Pac C, Ihama M, Yasuda M, Miyauchi Y, Sakurai H. J. Am. Chem. Soc. 1981; 103: 6495
    • 5c Ishitani O, Pac C, Sakurai H. J. Org. Chem. 1984; 49: 26
    • 5d Goren Z, Willner I. J. Am. Chem. Soc. 1983; 105: 7764
    • 5e Cano-Yelo H, Deronzier A. J. Chem. Soc., Perkin Trans. 2 1984; 1093
    • 5f Hironaka K, Fukuzumi S, Tanaka T. J. Chem. Soc., Perkin Trans. 2 1984; 1705
    • 5g Mashraqui SH, Kellog RM. Tetrahedron Lett. 1985; 26: 1453
    • 5h Tomioka H, Ueda K, Ohi H, Izawa Y. Chem. Lett. 1986; 1359
    • 5i Fukuzumi S, Mochizuki S, Tanaka T. J. Phys. Chem. 1990; 94: 722
    • 5j Okada K, Okamoto K, Morita N, Okubo K, Oda M. J. Am. Chem. Soc. 1991; 113: 9401
    • 5k Hamada T, Ishida H, Usui S, Watanabe Y, Tsumura K, Ohkubo K. J. Chem. Soc., Chem. Commun. 1993; 909
    • 5l Barton DH. R, Csiba MA, Jaszberenyi JC. Tetrahedron Lett. 1994; 35: 2869
    • 5m Zen JM, Liou SL, Kumar AS, Hsia MS. Angew. Chem. Int. Ed. 2003; 42: 577
    • 5n Hasegawa E, Takizawa S, Seida T, Yamaguchi A, Yamaguchi N, Chiba N, Takahashi T, Ikeda H, Akiyama K. Tetrahedron 2006; 62: 6581
  • 6 Koike T, Akita M. Chem. Lett. 2009; 38: 166
    • 7a Yasu Y, Koike T, Akita M. Adv. Synth. Catal. 2012; 354: 3414
    • 7b Miyazawa K, Yasu Y, Koike T, Akita M. Chem. Commun. 2013; 49: 7249
  • 8 Yasu Y, Koike T, Akita M. Chem. Commun. 2012; 48: 5355
  • 9 Yasu Y, Koike T, Akita M. Angew. Chem. Int. Ed. 2012; 51: 9567
  • 10 Yasu Y, Koike T, Akita M. Org. Lett. 2013; 15: 2136
  • 11 Yasu Y, Koike T, Akita M. Chem. Commun. 2013; 49: 2037
  • 12 Juris A, Balzani V, Barigelletti F, Campagna S, Belser P, von Zelewsky A. Coord. Chem. Rev. 1988; 84: 85
  • 13 Photochemistry and Photophysics of Metal Complexes. Roundhill DM. Plenum; New York: 1994
  • 14 Flamigni L, Barbieri A, Sabatini C, Ventura B, Barigelletti F. Top. Curr. Chem. 2007; 281: 143
  • 15 Slinker JD, Gorodetsky AA, Lowry MS, Wang J, Parker S, Rohl R, Bernhard S, Malliaras GG. J. Am. Chem. Soc. 2004; 126: 2763
  • 16 Lowry MS, Goldsmith JI, Slinker JD, Rohl R, Pascal RA, Malliaras GG, Bernhard S. Chem. Mater. 2005; 17: 5712
  • 17 Hanss D, Freys JC, Bernardinelli G, Wenger OS. Eur. J. Inorg. Chem. 2009; 4850
    • 18a Narasaka K, Okauchi T, Tanaka K, Murakami M. Chem. Lett. 1992; 2099
    • 18b Beeson TD, Mastracchino A, Hong J, Ashton K, MacMillan DW. C. Science 2007; 316: 582
  • 19 Tebben L, Studer A. Angew. Chem. Int. Ed. 2011; 50: 5034
    • 20a Jahn U. J. Org. Chem. 1998; 63: 7130
    • 20b Benoit D, Chaplinski V, Braslau R, Hawker CJ. J. Am. Chem. Soc. 1999; 121: 3904
    • 20c Schämann M, Schäfer HJ. Synlett 2004; 1601
    • 20d Sibi MP, Hasegawa M. J. Am. Chem. Soc. 2007; 129: 4124
    • 20e Bui N.-N, Ho X.-H, Mho S.-i, Jang H.-Y. Eur. J. Org. Chem. 2009; 5309
    • 20f Akagawa K, Fujiwara T, Sakamoto S, Kudo K. Org. Lett. 2010; 12: 1804
    • 20g Kano T, Mii H, Maruoka K. Angew. Chem. Int. Ed. 2010; 49: 6638
    • 20h Liu H, Feng W, Kee CW, Zhao Y, Leow D, Pan Y, Tan C.-H. Green Chem. 2010; 12: 953
    • 20i Simonovich SP, Van Humbeck JF, MacMillan DW. C. Chem. Sci. 2012; 3: 58
    • 20j Hayashi M, Shibuya M, Iwabuchi Y. Org. Lett. 2012; 14: 154

      We cannot rule out the reaction pathway through activation of TEMPO; see:
    • 21a Van Humbeck JF, Simonovich SP, Knowles RR, MacMillan DW. C. J. Am. Chem. Soc. 2010; 132: 10012
    • 21b Koike T, Yasu Y, Akita M. Chem. Lett. 2012; 41: 999
  • 22 Nicewicz DA, MacMillan DW. C. Science 2008; 322: 77
  • 23 Ischay MA, Anzovino ME, Du J, Yoon TP. J. Am. Chem. Soc. 2008; 130: 12886
  • 24 Narayanam JM. R, Tucker JW, Stephenson CR. J. J. Am. Chem. Soc. 2009; 131: 8756

    • For recent reviews on photoredox catalysis, see:
    • 25a Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
    • 25b Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 25c Teplý F. Collect. Czech. Chem. Commun. 2011; 76: 859
    • 25d Tucker JW, Stephenson CR. J. J. Org. Chem. 2012; 77: 1617
    • 25e Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
    • 25f Maity S, Zheng N. Synlett 2012; 23: 1851
    • 25g Shi L, Xia W. Chem. Soc. Rev. 2012; 41: 7687
    • 25h Xi Y, Yi H, Lei A. Org. Biomol. Chem. 2013; 11: 2387
    • 25i Hari DP, König B. Angew. Chem. Int. Ed. 2013; 52: 4734
    • 25j Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 26a Schuster GB. Pure Appl. Chem. 1990; 62: 1565
    • 26b Shundrin LA, Bardin VV, Frohn H.-J. Z. Anorg. Allg. Chem. 2004; 630: 1253
    • 26c Nishigaichi Y, Orimi T, Takuwa A. J. Organomet. Chem. 2009; 694: 3837
    • 26d Carzola C, Métay E, Andrioletti B, Lemaire M. Tetrahedron Lett. 2009; 50: 6855
    • 26e Sorin G, Mallorquin RM, Contie Y, Baralle A, Malacria M, Goddard J.-P, Fensterbank L. Angew. Chem. Int. Ed. 2010; 49: 8721
    • 26f Molander GA, Colombel V, Braz VA. Org. Lett. 2011; 13: 1852
    • 26g Lockner JW, Dixon DD, Risgaard R, Baran PS. Org. Lett. 2011; 13: 5628
    • 26h Fujiwara Y, Domingo V, Seiple IB, Gianatassio R, Bel MD, Baran PS. J. Am. Chem. Soc. 2011; 133: 3292

      For recent reviews on the synthesis and reactions of organoborate derivatives, see:
    • 27a Darses S, Genet J.-P. Eur. J. Org. Chem. 2003; 4313
    • 27b Stefani H, Cella R, Vieira AS. Tetrahedron 2007; 63: 3623
    • 27c Molander GA, Ellis N. Acc. Chem. Res. 2007; 40: 275
    • 27d Darses S, Genet J.-P. Chem. Rev. 2008; 108: 288
    • 27e Yamamoto Y, Takizawa M, Yu X.-Q, Miyaura N. Angew. Chem. Int. Ed. 2008; 47: 928
    • 28a Molander GA, Canturk B. Org. Lett. 2008; 10: 2135
    • 28b Molander GA, Beaumard F. Org. Lett. 2011; 13: 3948
    • 28c Molander GA, Wisniewski SR. J. Am. Chem. Soc. 2012; 134: 16856
  • 29 The present aryloxymethylation is regarded as a hydroxymethylation, because the aryloxy group can be readily deprotected by treatment with cerium(IV) ammonium nitrate (CAN); see: Mikami T, Harada M, Narasaka K. Chem. Lett. 1999; 425
  • 30 Andrews RS, Becker JJ, Gagné MR. Angew. Chem. Int. Ed. 2010; 49: 7274

    • For selected examples of photoredox-catalyzed aminoalkylations, see:
    • 31a McNally A, Prier CK, MacMillan DW. C. Science 2011; 334: 1114
    • 31b Kohls P, Jadhav D, Pandey G, Reiser O. Org. Lett. 2012; 14: 672
    • 31c Miyake Y, Nakajima K, Nishibayashi Y. J. Am. Chem. Soc. 2012; 134: 3338
    • 31d Miyake Y, Ashida Y, Nakajima K, Nishibayashi Y. Chem. Commun. 2012; 48: 6966
    • 31e Miyake Y, Nakajima K, Nishibayashi Y. Chem. Eur. J. 2012; 18: 16473
    • 31f Ju X, Li D, Li W, Yu W, Bian F. Adv. Synth. Catal. 2012; 354: 3561
    • 31g Zhu S, Das A, Bui L, Zhou H, Curran DP, Rueping M. J. Am. Chem. Soc. 2013; 135: 1823
    • 32a Gutenberger G, Steckhan E, Blechert S. Angew. Chem. Int. Ed. 1998; 37: 660
    • 32b Yoshida J.-i, Kataoka K, Horcajada R, Nagaki A. Chem. Rev. 2008; 108: 2265 ; and references cited therein
  • 33 Jang H.-Y, Hong J.-B, MacMillan DW. C. J. Am. Chem. Soc. 2007; 129: 7004
    • 34a Liu Y.-X, Xue D, Wang J.-D, Zhao C.-J, Zou Q.-Z, Wang C, Xiao J. Synlett 2013; 24: 507
    • 34b Donck S, Baroudi A, Fensterbank L, Goddard J.-P, Ollivier C. Adv. Synth. Catal. 2013; 355: 1477
    • 34c Baralle A, Fensterbank L, Goddard J.-P, Ollivier C. Chem. Eur. J. 2013; 19: 10809
  • 35 Umemoto T. Chem. Rev. 1996; 96: 1757 ; and references cited therein
    • 36a Eisenberger P, Gischig S, Togni A. Chem. Eur. J. 2006; 12: 2579
    • 36b Kieltsch I, Eisenberger P, Togni A. Angew. Chem. Int. Ed. 2007; 46: 754
    • 37a Macé Y, Magnier E. Eur. J. Org. Chem. 2012; 2479
    • 37b Shibata N, Matsnev A, Cahard D. Beilstein J. Org. Chem. 2010; 6: 65

      For selected reviews on the synthesis of organofluorine compounds, see:
    • 39a Ma J.-A, Cahard D. Chem. Rev. 2004; 104: 6119
    • 39b Shimizu M, Hiyama T. Angew. Chem. Int. Ed. 2005; 44: 214
    • 39c Ma J.-A, Cahard D. J. Fluorine Chem. 2007; 128: 975
    • 39d Shibata N, Mizuta S, Toru T. J. Synth. Org. Chem., Jpn. 2008; 66: 215
    • 39e Ma J.-A, Cahard D. Chem. Rev. 2008; 108: PR1
    • 39f Katsuyama I. J. Synth. Org. Chem., Jpn. 2009; 67: 992
    • 39g Hu J, Zhang W, Wang F. Chem. Commun. 2009; 7465
    • 39h Amii H. J. Synth. Org. Chem., Jpn. 2011; 69: 752
    • 39i Tomashenko OA, Grushin VV. Chem. Rev. 2011; 111: 4475
    • 39j Furuya T, Kamlet AS, Ritter T. Nature 2011; 473: 470
    • 39k Besset T, Schneider C, Cahard D. Angew. Chem. Int. Ed. 2012; 51: 5048
    • 39l Studer A. Angew. Chem. Int. Ed. 2012; 51: 8950
    • 39m Hollingworth C, Gouverneur V. Chem. Commun. 2012; 48: 2929
    • 39n Liu H, Gu Z, Jiang X. Adv. Synth. Catal. 2013; 355: 617
    • 40a Nagib DA, Scott ME, MacMillan DW. C. J. Am. Chem. Soc. 2009; 131: 10875
    • 40b Nagib DA, MacMillan DW. C. Nature 2011; 480: 224
    • 41a Nguyen JD, Tucker JW, Konieczynska MD, Stephenson CR. J. J. Am. Chem. Soc. 2011; 133: 4160
    • 41b Wallentin C.-J, Nguyen JD, Finkbeiner P, Stephenson CR. J. J. Am. Chem. Soc. 2012; 134: 8875
    • 42a Iqbal N, Choi S, Ko E, Cho EJ. Tetrahedron Lett. 2012; 53: 2005
    • 42b Ye Y, Sanford MS. J. Am. Chem. Soc. 2012; 134: 9034
    • 42c Iqbal N, Choi S, Kim E, Cho EJ. J. Org. Chem. 2012; 77: 11383
    • 42d Kim E, Choi S, Kim H, Cho EJ. Chem. Eur. J. 2013; 19: 6209

      After our publication, a photoredox-catalyzed trifluoromethylation using electrophilic trifluoromethylating reagents was reported; see
    • 43a Mizuta S, Verhoog S, Engle KM, Khotavivattana T, O’Duill M, Wheelhouse K, Rassias G, Médebielle M, Gouverneur V. J. Am. Chem. Soc. 2013; 135: 2505
    • 43b Mizuta S, Engle KM, Verhoog S, Galicia-López O, O’Duill M, Médebielle M, Wheelhouse K, Rassias G, Thompson AL, Gouverneur V. Org. Lett. 2013; 15: 1250

      For recent reviews on alkene difunctionalization, see:
    • 44a Muñiz K. Chem. Soc. Rev. 2004; 33: 166
    • 44b Wolfe JP. Synlett 2008; 2913
    • 44c Jensen KH, Sigman MS. Org. Biomol. Chem. 2008; 6: 4083
    • 44d Cardona F, Goti A. Nat. Chem. 2009; 1: 269
    • 44e McDonald RI, Liu G, Stahl SS. Chem. Rev. 2011; 111: 2981
    • 44f Wolfe JP. Angew. Chem. Int. Ed. 2012; 51: 10224
    • 45a Fuchikami T, Shibata Y, Urata H. Chem. Lett. 1987; 521
    • 45b Kamigata N, Fukushima T, Yoshida M. J. Chem. Soc., Chem. Commun. 1989; 1559
    • 45c Kamigata N, Fukushima T, Terakawa Y, Yoshida M, Sawada H. J. Chem. Soc., Perkin Trans. 1 1991; 627
    • 45d Ignatowska J, Dmowski W. J. Fluorine Chem. 2007; 128: 997
    • 45e Mu X, Wu T, Wang H.-Y, Guo Y.-L, Liu G. J. Am. Chem. Soc. 2012; 134: 878
    • 45f Janson PG, Ghoneim I, Ilchenko NO, Szabó KJ. Org. Lett. 2012; 14: 2882
    • 45g Zhu R, Buchwald SL. J. Am. Chem. Soc. 2012; 134: 12462
    • 45h Li Y, Studer A. Angew. Chem. Int. Ed. 2012; 51: 8221
    • 45i Egami H, Shimizu R, Sodeoka M. Tetrahedron Lett. 2012; 53: 5503
    • 45j Feng C, Loh T.-P. Chem. Sci. 2012; 3: 3458
    • 45k Wu X, Chu L, Qing F.-L. Angew. Chem. Int. Ed. 2013; 52: 2198
    • 45l Lu D.-F, Zhu C.-L, Xu H. Chem. Sci. 2013; 4: 2478
    • 45m Egami H, Shimizu R, Kawamura S, Sodeoka M. Angew. Chem. Int. Ed. 2013; 52: 4000
    • 45n Egami H, Kawamura S, Miyazaki A, Sodeoka M. Angew. Chem. Int. Ed. 2013; 52: 7841

      For syntheses of panomifene, see:
    • 46a Németh G, Kapiller-Dezsőfi R, Lax G, Simig G. Tetrahedron 1996; 52: 12821
    • 46b Liu X, Shimizu M, Hiyama T. Angew. Chem. Int. Ed. 2004; 43: 879 ; and references pertaining to bioactivity cited therein
    • 47a Ritter JJ, Minieri PP. J. Am. Chem. Soc. 1948; 70: 4045
    • 47b Ritter JJ, Kalish J. J. Am. Chem. Soc. 1948; 70: 4048

      For recent reviews on syntheses of trifluoromethylated amino acids, see:
    • 48a Nie J, Guo H.-C, Cahard D, Ma J.-A. Chem. Rev. 2011; 111: 455
    • 48b Qiu X.-L, Qing F.-L. Eur. J. Org. Chem. 2011; 3261
    • 49a Rivkin A, Chou T.-C, Danishefsky SJ. Angew. Chem. Int. Ed. 2005; 44: 2838
    • 49b Shimizu M, Takeda Y, Higashi M, Hiyama T. Angew. Chem. Int. Ed. 2009; 48: 3653
    • 49c Shimizu M, Takeda Y, Higashi M, Hiyama T. Chem. Asian J. 2011; 6: 2536
    • 49d Shi Z, Davies J, Jang S.-H, Kaminsky W, Jen AK.-Y. Chem. Commun. 2012; 48: 7880
    • 49e Selby TP. US 5389600, 1995
    • 50a Xu J, Luo D.-F, Xiao B, Liu Z.-J, Gong T.-J, Fu Y, Liu L. Chem. Commun. 2011; 47: 4300
    • 50b Liu T, Shen Q. Org. Lett. 2011; 13: 2342
    • 50c Parsons AT, Senecal TD, Buchwald SL. Angew. Chem. Int. Ed. 2012; 51: 2947
    • 50d He Z, Luo T, Hu M, Cao Y, Hu J. Angew. Chem. Int. Ed. 2012; 51: 3944
    • 50e Li Y, Wu L, Neumann H, Beller M. Chem. Commun. 2013; 49: 2628
  • 51 Kim H, MacMillan DW. C. J. Am. Chem. Soc. 2008; 130: 398