Synlett 2013; 24(15): 1887-1898
DOI: 10.1055/s-0033-1339435
account
© Georg Thieme Verlag Stuttgart · New York

Organometallic Aspects of Fluoroalkylation Reactions with Copper and Nickel

Huan Wang
Department of Chemistry, Lehigh University, 6 E. Packer Avenue, Bethlehem PA 18015, USA   Fax: +1(610)7586536   Email: [email protected]
,
David A. Vicic*
Department of Chemistry, Lehigh University, 6 E. Packer Avenue, Bethlehem PA 18015, USA   Fax: +1(610)7586536   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 22 May 2013

Accepted after revision: 19 June 2013

Publication Date:
22 August 2013 (online)


Abstract

The development of perfluoroalkylation methods has become increasingly important in synthetic chemistry. However, many of the metal-mediated transformations that occur readily with alkyl substrates can proceed slowly, with limited scope, or not proceed at all with fluoroalkyl derivatives. To develop more sophisticated transformations with fluoroalkyl groups using base metals, a better understanding of their fundamental fluoro-organometallic chemistry is needed.

This account describes our recent investigations into the organometallic chemistry of well-defined nickel– and copper–fluoroalkyl complexes, as well as our efforts towards trifluoromethoxylations and trifluoromethylthiolations using those metals. Synthetic routes to the new complexes are discussed, as are their structural and electrochemical properties and chemical reactivities.

1 Introduction

2 Bottling a Copper(I)–Trifluoromethyl Source

3 The Redox Chemistry of Copper– and Nickel–Fluoroalkyl Complexes

4 Nickel- and Copper-Mediated Trifluoromethylthiolations

5 The Organometallic Chemistry of Nickel–Perfluoroalkyl Complexes

6 Outlook

 
  • References

  • 1 Anderson TJ, Jones GD, Vicic DA. J. Am. Chem. Soc. 2004; 126: 8100
  • 2 Anderson TJ, Vicic DA. Organometallics 2004; 23: 623
  • 3 Jones GD, McFarland C, Anderson TJ, Vicic DA. Chem. Commun. 2005; 4211
  • 4 Jones GD, Martin JL, McFarland C, Allen OR, Hall RE, Haley AD, Brandon RJ, Konovalova T, Desrochers PJ, Pulay P, Vicic DA. J. Am. Chem. Soc. 2006; 128: 13175
  • 5 Mcloughlin VC. R, Thrower J. Tetrahedron 1969; 25: 5921
  • 6 Kondratenko NV, Vechirko EP, Yagupolskii LM. Synthesis 1980; 932
  • 7 Kobayashi Y, Kumadaki I. Tetrahedron Lett. 1969; 10: 4095
  • 8 Schlosser M. Angew. Chem. Int. Ed. 2006; 45: 5432
  • 9 Sato K, Tarui A, Omote M, Ando A, Kumadaki I. Synthesis 2010; 1865
  • 10 Wiemers DM, Burton DJ. J. Am. Chem. Soc. 1986; 108: 832
  • 11 Cottet F, Schlosser M. Eur. J. Org. Chem. 2002; 327
  • 12 Kobayashi Y, Yamamoto K, Asai T, Nakano M, Kumadaki I. J. Chem. Soc., Perkin Trans. 1 1980; 2755
  • 13 Kobayashi Y, Kumadaki I. J. Chem. Soc., Perkin Trans. 1 1980; 661
  • 14 Matsui K, Tobita E, Ando M, Kondo K. Chem. Lett. 1981; 1719
  • 15 Carr GE, Chambers RD, Holmes TF, Parker DG. J. Chem. Soc., Perkin Trans. 1 1988; 921
  • 16 Chang Y, Cai C. Tetrahedron Lett. 2005; 46: 3161
  • 17 Coan PS, Folting K, Huffman JC, Caulton KG. Organometallics 1989; 8: 2724
  • 18 Mankad NP, Gray TG, Laitar DS, Sadighi JP. Organometallics 2004; 23: 1191
  • 19 Janssen MD, Köhler K, Herres M, Dedieu A, Smeets WJ. J, Spek AL, Grove DM, Lang H, van Koten G. J. Am. Chem. Soc. 1996; 118: 4817
  • 20 Martin SF, Fishpaugh JR, Power JM, Giolando DM, Jones RA, Nunn CM, Cowley AH. J. Am. Chem. Soc. 1988; 110: 7226
  • 21 Schaper F, Foley SR, Jordan RF. J. Am. Chem. Soc. 2004; 126: 2114
  • 22 Dubinina GG, Furutachi H, Vicic DA. J. Am. Chem. Soc. 2008; 130: 8600
  • 23 Dubinina GG, Ogikubo J, Vicic DA. Organometallics 2008; 27: 6233
  • 24 Willert-Porada MA, Burton DJ, Baenziger NC. J. Chem. Soc., Chem. Commun. 1989; 1633
  • 25 Kuett A, Movchun V, Rodima T, Dansauer T, Rusanov EB, Leito I, Kaljurand I, Koppel J, Pihl V, Koppel I, Ovsjannikov G, Toom L, Mishima M, Medebielle M, Lork E, Roeschenthaler G.-V, Koppel IA, Kolomeitsev AA. J. Org. Chem. 2008; 73: 2607
  • 26 Strieter ER, Bhayana B, Buchwald SL. J. Am. Chem. Soc. 2009; 131: 78
  • 27 Tye JW, Weng Z, Johns AM, Incarvito CD, Hartwig JF. J. Am. Chem. Soc. 2008; 130: 9971
  • 28 Zhang C.-P, Vicic DA. Organometallics 2012; 31: 7812
  • 29 Leroux FR, Manteau B, Vors J.-P, Pazenok S. Beilstein J. Org. Chem. 2008; 4: No. 13
  • 30 Kolomeitsev AA, Vorobyev M, Gillandt H. Tetrahedron Lett. 2008; 49: 449
  • 31 Marrec O, Billard T, Vors J.-P, Pazenok S, Langlois BR. J. Fluorine Chem. 2010; 131: 200
  • 32 Marrec O, Billard T, Vors J.-P, Pazenok S, Langlois BR. Adv. Synth. Catal. 2010; 352: 2831
  • 33 Huang C, Liang T, Harada S, Lee E, Ritter T. J. Am. Chem. Soc. 2011; 133: 13308
  • 34 Langlois BR, Roques N. J. Fluorine Chem. 2007; 128: 1318
  • 35 Farnham WB, Smart BE, Middleton WJ, Calabrese JC, Dixon DA. J. Am. Chem. Soc. 1985; 107: 4565
  • 36 Reed AE, Weinhold F. J. Chem. Phys. 1985; 83: 1736
  • 37 Khrizanforov M, Gryaznova T, Sinyashin O, Budnikova Y. J. Organomet. Chem. 2012; 718: 101
  • 38 Kieltsch I, Dubinina GG, Hamacher C, Kaiser A, Torres-Nieto J, Hutchison JM, Klein A, Budnikova Y, Vicic DA. Organometallics 2010; 29: 1451
  • 39 Lever AB. P. Inorg. Chem. 1990; 29: 1271
  • 40 Yamaguchi Y, Ichioka H, Klein A, Brennessel WW, Vicic DA. Organometallics 2012; 31: 1477
  • 41 Klein A, Vicic DA, Biewer C, Kieltsch I, Stirnat K, Hamacher C. Organometallics 2012; 31: 5334
  • 42 Zhang C.-P, Wang H, Klein A, Biewer C, Stirnat K, Yamaguchi Y, Xu L, Gomez-Benitez V, Vicic DA. J. Am. Chem. Soc. 2013; 135: 8141
  • 43 Shustova NB, Kuvychko IV, Peryshkov DV, Whitaker JB, Larson BW, Chen Y.-S, Dunsch L, Seppelt K, Popov AA, Strauss SH, Boltalina OV. Chem. Commun. 2011; 47: 875
  • 44 Kuvychko IV, Spisak SN, Chen Y.-S, Popov AA, Petrukhina MA, Strauss SH, Boltalina OV. Angew. Chem. Int. Ed. 2012; 51: 4939
  • 45 Kuvychko IV, Castro KP, Deng SH. M, Wang X.-B, Strauss SH, Boltalina OV. Angew. Chem. Int. Ed. 2013; 52: 4871
  • 46 Cacace F, Caronna S. J. Am. Chem. Soc. 1967; 89: 6848
  • 47 The International Union of Pure and Applied Chemistry (IUPAC) defines an inductive effect as ‘an experimentally observable effect of the transmission of charge through a chain of atoms by electrostatic induction,’ see: IUPAC Compendium of Chemical Terminology (the ‘Gold Book’). compiled by McNaught AD, Wilkinson A. 2nd ed. Blackwell Scientific Publications; Oxford: 1997
  • 48 Goodman J, Grushin VV, Larichev RB, Macgregor SA, Marshall WJ, Roe DC. J. Am. Chem. Soc. 2010; 132: 12013
  • 49 Martinez-Salvador S, Fornies J, Martin A, Menjon B. Chem. Eur. J. 2011; 17: 8085
  • 50 Martinez-Salvador S, Fornies J, Martin A, Menjon B. Angew. Chem. Int. Ed. 2011; 50: 6571
  • 51 Tomashenko OA, Grushin VV. Chem. Rev. 2011; 111: 4475
  • 52 Taw FL, Clark AE, Mueller AH, Janicke MT, Cantat T, Scott BL, Hay PJ, Hughes RP, Kiplinger JL. Organometallics 2012; 31: 1484
  • 53 Algarra AG, Grushin VV, MacGregor SA. Organometallics 2012; 31: 1467
  • 54 Boiko VN. Beilstein J. Org. Chem. 2010; 6: 880
  • 55 Hansch C, Leo A, Unger SH, Kim KH, Nikaitani D, Lien EJ. J. Med. Chem. 1973; 16: 1207
  • 56 Zhang C.-P, Vicic DA. J. Am. Chem. Soc. 2012; 134: 183
  • 57 Teverovskiy G, Surry DS, Buchwald SL. Angew. Chem. Int. Ed. 2011; 50: 7312
  • 58 Tyrra W, Naumann D, Hoge B, Yagupolskii YL. J. Fluorine Chem. 2003; 119: 101
  • 59 Tavener SJ, Adams DJ, Clark JH. J. Fluorine Chem. 1999; 95: 171
  • 60 Molander GA, Trice SL. J, Dreher SD. J. Am. Chem. Soc. 2010; 132: 17701
  • 61 Zhang C.-P, Vicic DA. Chem. Asian J. 2012; 7: 1756
  • 62 Chen C, Xie Y, Chu L, Wang R.-W, Zhang X, Qing F.-L. Angew. Chem. Int. Ed. 2012; 51: 2492
  • 63 Weng Z, He W, Chen C, Lee R, Tan D, Lai Z, Kong D, Yuan Y, Huang K.-W. Angew. Chem. Int. Ed. 2013; 52: 1548
  • 64 Zhang C.-P, Brennessel WW, Vicic DA. J. Fluorine Chem. 2012; 140: 112
  • 65 Stanley K, Zelonka RA, Thomson J, Fiess P, Baird MC. Can. J. Chem. 1974; 52: 1781
  • 66 McBride DW, Dudek E, Stone FG. A. J. Chem. Soc. 1964; 1752
  • 67 Krause LJ, Morrison JA. J. Chem. Soc., Chem. Commun. 1981; 1282
  • 68 Klabunde KJ. Angew. Chem. Int. Ed. Engl. 1975; 14: 287 ; Angew. Chem. 1975, 87, 309
  • 69 Hristov IH, DeKock RL, Anderson GD. W, Goettker-Schnetmann I, Mecking S, Ziegler T. Inorg. Chem. 2005; 44: 7806
  • 70 Firsich DW, Lagow RJ. J. Chem. Soc., Chem. Commun. 1981; 1283
  • 71 Cundy CS. J. Organomet. Chem. 1974; 69: 305
  • 72 Chen Q, Freiser BS. Chem. Phys. Lett. 1998; 284: 339
  • 73 Ashley-Smith J, Green M, Stone FG. A. J. Chem. Soc. A 1969; 3019
  • 74 Smith SW, Fu GC. Angew. Chem. Int. Ed. 2008; 47: 9334
  • 75 Smith SW, Fu GC. J. Am. Chem. Soc. 2008; 130: 12645
  • 76 Lou S, Fu GC. J. Am. Chem. Soc. 2010; 132: 5010
  • 77 Lou S, Fu GC, Bryan CS, Lautens M. Org. Synth. 2010; 87: 330
  • 78 Lu Z, Fu GC. Angew. Chem. Int. Ed. 2010; 49: 6676
  • 79 Lundin PM, Fu GC. J. Am. Chem. Soc. 2010; 132: 11027
  • 80 Owston NA, Fu GC. J. Am. Chem. Soc. 2010; 132: 11908
  • 81 Lu Z, Wilsily A, Fu GC. J. Am. Chem. Soc. 2011; 133: 8154
  • 82 Zultanski SL, Fu GC. J. Am. Chem. Soc. 2011; 133: 15362
  • 83 Binder JT, Cordier CJ, Fu GC. J. Am. Chem. Soc. 2012; 134: 17003
  • 84 Choi J, Fu GC. J. Am. Chem. Soc. 2012; 134: 9102
  • 85 Dudnik AS, Fu GC. J. Am. Chem. Soc. 2012; 134: 10693
  • 86 Oelke AJ, Sun J, Fu GC. J. Am. Chem. Soc. 2012; 134: 2966
  • 87 Wilsily A, Tramutola F, Owston NA, Fu GC. J. Am. Chem. Soc. 2012; 134: 5794
  • 88 Zultanski SL, Fu GC. J. Am. Chem. Soc. 2013; 135: 624
  • 89 Everson DA, Shrestha R, Weix DJ. J. Am. Chem. Soc. 2010; 132: 920
  • 90 Prinsell MR, Everson DA, Weix DJ. Chem. Commun. 2010; 46: 5743
  • 91 Everson DA, Jones BA, Weix DJ. J. Am. Chem. Soc. 2012; 134: 6146
  • 92 Wotal AC, Weix DJ. Org. Lett. 2012; 14: 1476
  • 93 Gong H, Sinisi R, Gagne MR. J. Am. Chem. Soc. 2007; 129: 1908
  • 94 Gong H, Gagne MR. J. Am. Chem. Soc. 2008; 130: 12177
  • 95 Gong H, Andrews RS, Zuccarello JL, Lee SJ, Gagne MR. Org. Lett. 2009; 11: 879
  • 96 Phapale VB, Bunuel E, Garcia-Iglesias M, Cardenas DJ. Angew. Chem. Int. Ed. 2007; 46: 8790
  • 97 Phapale VB, Guisan-Ceinos M, Bunuel E, Cardenas DJ. Chem. Eur. J. 2009; 15: 12681
  • 98 Joshi-Pangu A, Ganesh M, Biscoe MR. Org. Lett. 2011; 13: 1218
  • 99 Joshi-Pangu A, Wang C.-Y, Biscoe MR. J. Am. Chem. Soc. 2011; 133: 8478
  • 100 Dai Y, Wu F, Zang Z, You H, Gong H. Chem. Eur. J. 2012; 18: 808
  • 101 Wang S, Qian Q, Gong H. Org. Lett. 2012; 14: 3352
  • 102 Wu F, Lu W, Qian Q, Ren Q, Gong H. Org. Lett. 2012; 14: 3044
  • 103 Yin H, Zhao C, You H, Lin K, Gong H. Chem. Commun. 2012; 48: 7034
  • 104 Yu X, Yang T, Wang S, Xu H, Gong H. Org. Lett. 2011; 13: 2138
  • 105 Csok Z, Vechorkin O, Harkins SB, Scopelliti R, Hu X. J. Am. Chem. Soc. 2008; 130: 8156
  • 106 Vechorkin O, Barmaz D, Proust V, Hu X. J. Am. Chem. Soc. 2009; 131: 12078
  • 107 Vechorkin O, Hu X. Angew. Chem. Int. Ed. 2009; 48: 2937
  • 108 Vechorkin O, Proust V, Hu X. J. Am. Chem. Soc. 2009; 131: 9756
  • 109 Hu X. Chem. Sci. 2011; 2: 1867
  • 110 Ren P, Vechorkin O, von Allmen K, Scopelliti R, Hu X. J. Am. Chem. Soc. 2011; 133: 7084
  • 111 Vechorkin O, Godinat A, Scopelliti R, Hu X. Angew. Chem. Int. Ed. 2011; 50: 11777
  • 112 Dubinina GG, Brennessel WW, Miller JL, Vicic DA. Organometallics 2008; 27: 3933
  • 113 Ciszewski JT, Mikhaylov DY, Holin KV, Kadirov MK, Budnikova YH, Sinyashin O, Vicic DA. Inorg. Chem. 2011; 50: 8630
  • 114 Grove DM, Van Koten G, Zoet R, Murrall NW, Welch AJ. J. Am. Chem. Soc. 1983; 105: 1379
  • 115 Grove DM, Van Koten G, Mul P, Van der Zeijden AA. H, Terheijden J, Zoutberg MC, Stam CH. Organometallics 1986; 5: 322
  • 116 Grove DM, Van Koten G, Mul P, Zoet R, Van der Linden JG. M, Legters J, Schmitz JE. J, Murrall NW, Welch AJ. Inorg. Chem. 1988; 27: 2466
  • 117 van der Kuil LA, Veldhuizen YS. J, Grove DM, Zwikker JW, Jenneskens LW, Drenth W, Smeets WJ. J, Spek AL, van Koten G. J. Organomet. Chem. 1995; 488: 191
  • 118 Castonguay A, Beauchamp AL, Zargarian D. Organometallics 2008; 27: 5723
  • 119 Spasyuk DM, Zargarian D, van der Est A. Organometallics 2009; 28: 6531
  • 120 Alonso PJ, Falvello LR, Fornies J, Martin A, Menjon B, Rodriguez G. Chem. Commun. (Cambridge) 1997; 503
  • 121 Yang N, Reiher M, Wang M, Harmer J, Duin EC. J. Am. Chem. Soc. 2007; 129: 11028
  • 122 Klein A, Kaiser A, Sarkar B, Wanner M, Fiedler J. Eur. J. Inorg. Chem. 2007; 965
  • 123 Alonso PJ, Arauzo AB, Garcia-Monforte MA, Martin A, Menjon B, Rillo C, Tomas M. Chem. Eur. J. 2009; 15: 11020
  • 124 Mikhaylov D, Gryaznova T, Dudkina Y, Khrizanphorov M, Latypov S, Kataeva O, Vicic DA, Sinyashin OG, Budnikova Y. Dalton Trans. 2012; 41: 165
  • 125 Liu T, Shen Q. Eur. J. Org. Chem. 2012; 2012: 6679
  • 126 Parsons AT, Buchwald SL. Angew. Chem. Int. Ed. 2011; 50: 9120
  • 127 Senecal TD, Parsons AT, Buchwald SL. J. Org. Chem. 2011; 76: 1174
  • 128 Zhu R, Buchwald SL. J. Am. Chem. Soc. 2012; 134: 12462
  • 129 Mizuta S, Galicia-Lopez O, Engle KM, Verhoog S, Wheelhouse K, Rassias G, Gouverneur V. Chem. Eur. J. 2012; 18: 8583
  • 130 Chu L, Qing F.-L. Org. Lett. 2010; 12: 5060
  • 131 Chu L, Qing F.-L. Synthesis 2012; 44: 1521
  • 132 Chu L, Qing F.-L. Org. Lett. 2012; 14: 2106
  • 133 Chu L, Qing F.-L. J. Am. Chem. Soc. 2012; 134: 1298
  • 134 Jiang X, Chu L, Qing F.-L. J. Org. Chem. 2012; 77: 1251
  • 135 Zhang K, Qiu X.-L, Huang Y, Qing F.-L. Eur. J. Org. Chem. 2012; 2012: 58
  • 136 Ye Y, Kunzi SA, Sanford MS. Org. Lett. 2012; 14: 4979
  • 137 Ye Y, Sanford MS. J. Am. Chem. Soc. 2012; 134: 9034
  • 138 Zhu J, Zhang W, Zhang L, Liu J, Zheng J, Hu J. J. Org. Chem. 2010; 75: 5505
  • 139 Zhu J, Wang F, Huang W, Zhao Y, Ye W, Hu J. Synlett 2011; 899
  • 140 He Z, Hu M, Luo T, Li L, Hu J. Angew. Chem. Int. Ed. 2012; 51: 11545
  • 141 He Z, Luo T, Hu M, Cao Y, Hu J. Angew. Chem. Int. Ed. 2012; 51: 3944
  • 142 Hu M, Ni C, Hu J. J. Am. Chem. Soc. 2012; 134: 15257
  • 143 Zhao Y, Gao B, Ni C, Hu J. Org. Lett. 2012; 14: 6080
  • 144 Zhao Y, Ni C, Jiang F, Gao B, Shen X, Hu J. ACS Catal. 2013; 3: 631
  • 145 Qi Q, Shen Q, Lu L. J. Am. Chem. Soc. 2012; 134: 6548
  • 146 Chen C, Weng Z, Hartwig JF. Organometallics 2012; 31: 8031
  • 147 Huang Y, Fang X, Lin X, Li H, He W, Huang K.-W, Yuan Y, Weng Z. Tetrahedron 2012; 68: 9949
  • 148 Lin X, Wang G, Li H, Huang Y, He W, Ye D, Huang K.-W, Yuan Y, Weng Z. Tetrahedron 2013; 69: 2628
  • 149 Morimoto H, Tsubogo T, Litvinas ND, Hartwig JF. Angew. Chem. Int. Ed. 2011; 50: 3793
  • 150 Fier PS, Hartwig JF. J. Am. Chem. Soc. 2012; 134: 5524
  • 151 Litvinas ND, Fier PS, Hartwig JF. Angew. Chem. Int. Ed. 2012; 51: 536
  • 152 Oishi M, Kondo H, Amii H. Chem. Commun. 2009; 1909
  • 153 Fujikawa K, Fujioka Y, Kobayashi A, Amii H. Org. Lett. 2011; 13: 5560
  • 154 Kondo H, Oishi M, Fujikawa K, Amii H. Adv. Synth. Catal. 2011; 353: 1247
  • 155 Tomashenko OA, Escudero-Adan EC, Martinez BM, Grushin VV. Angew. Chem. Int. Ed. 2011; 50: 7655
  • 156 Zanardi A, Novikov MA, Martin E, Benet-Buchholz J, Grushin VV. J. Am. Chem. Soc. 2011; 133: 20901
  • 157 Novak P, Lishchynskyi A, Grushin VV. J. Am. Chem. Soc. 2012; 134: 16167
  • 158 Novak P, Lishchynskyi A, Grushin VV. Angew. Chem. Int. Ed. 2012; 51: 7767