Synlett 2014; 25(14): 1971-1986
DOI: 10.1055/s-0033-1339136
account
© Georg Thieme Verlag Stuttgart · New York

Formic Acid Derivatives as Practical Carbon Monoxide Surrogates for Metal-Catalyzed Carbonylation Reactions

Hideyuki Konishi
School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan   Fax: +81(54)2645586   Email: manabe@u-shizuoka-ken.ac.jp
,
Kei Manabe*
School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan   Fax: +81(54)2645586   Email: manabe@u-shizuoka-ken.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 26 March 2014

Accepted after revision: 24 April 2014

Publication Date:
10 July 2014 (eFirst)

Abstract

This account describes our findings on formic acid derivatives as practical carbon monoxide (CO) surrogates in synthetic organic chemistry. Among the known CO surrogates, formic acid derivatives are advantageous in terms of their good availability, stability, and ease of handling. We adopted two approaches to expand the synthetic utility of formic acid derivatives. One is the use of formic acid esters for reactions with alkenes based on the finding that substituted imidazoles can function as the ligands in ruthenium-catalyzed hydroesterifications of alkenes. The other approach involves the use of formic acid derivatives for reactions with (hetero)aryl or alkenyl halides based on the finding that phenyl formate undergoes decomposition to give CO and phenol by simply reacting with a weak base such as triethylamine. In addition to phenyl formate, electrophilic formic acid derivatives such as 2,4,6-trichlorophenyl formate and N-formylsaccharin were found to be stable on storage, but highly reactive, even under ambient reaction conditions, functioning as CO-generating compounds. The in situ generated CO can be incorporated efficiently into products under metal catalysis, thus providing a novel carbonylation. Notably, the carbonylation process did not require the use of external gaseous CO, thus significantly enhancing the safety and practicality of the approach.

1 Introduction

2 Ruthenium-Catalyzed Hydroesterification

3 Palladium-Catalyzed Aryloxycarbonylation

3.1 Decomposition of Phenyl Formate under Weakly Basic Conditions

3.2 Aryloxycarbonylation Using Phenyl Formate

3.3 Room-Temperature Aryloxycarbonylation Using 2,4,6-Trichlorophenyl Formate

4 Reductive Carbonylation Using N-Formylsaccharin

5 Fluorocarbonylation Using N-Formylsaccharin

6 Conclusion

 
  • References

    • 1a Zapf A, Beller M. Top. Catal. 2002; 19: 101
    • 1b Torborg C, Beller M. Adv. Synth. Catal. 2009; 351: 3027
    • 1c Busacca CA, Fandrick DR, Song JJ, Senanayake CH. Adv. Synth. Catal. 2011; 353: 1825

      For selected reviews, see:
    • 2a Kiss G. Chem. Rev. 2001; 101: 3435
    • 2b Brennführer A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2009; 48: 4114
    • 2c Liu Q, Zhang H, Lei A. Angew. Chem. Int. Ed. 2011; 50: 10788
    • 2d Wu X.-F, Neumann H. ChemCatChem 2012; 4: 447
    • 2e Ryu I. Chem. Soc. Rev. 2001; 30: 16
    • 2f Wu X.-F, Neumann H, Beller M. Chem. Rev. 2013; 113: 1
    • 2g Grigg R, Mutton SP. Tetrahedron 2010; 66: 5515
      • 23
      • 3a Morimoto T, Kakiuchi K. Angew. Chem. Int. Ed. 2004; 43: 5580
      • 3b Wu L, Liu Q, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2014; 53: 6310
  • 4 Odell LR, Russo F, Larhed M. Synlett 2012; 685
    • 5a Morgan JS. J. Chem. Soc. Trans. 1916; 109: 274
    • 5b Popova GY, Zakharov II, Andrushkevich TV. React. Kinet. Catal. Lett. 1999; 66: 251
  • 6 Cacchi S, Fabrizi G, Goggiamani A. Org. Lett. 2003; 5: 4269
    • 7a Okano T, Kobayashi T, Konishi H, Kiji J. Tetrahedron Lett. 1982; 23: 4967
    • 7b Beck CM, Rathmill SE, Park YJ, Chen J, Crabtree RH, Liable-Sands LM, Rheingold AL. Organometallics 1999; 18: 5311
    • 7c Fuji K, Morimoto T, Tsutsumi K, Kakiuchi K. Angew. Chem. Int. Ed. 2003; 42: 2409
    • 7d Morimoto T, Fujioka M, Fuji K, Tsutsumi K, Kakiuchi K. Pure Appl. Chem. 2008; 80: 1079
  • 8 Hermange P, Lindhardt AT, Taaning RH, Bjerglund K, Lupp D, Skrydstrup T. J. Am. Chem. Soc. 2011; 133: 6061
  • 9 Friis SD, Taaning RH, Lindhardt AT, Skrydstrup T. J. Am. Chem. Soc. 2011; 133: 18114

    • The use of a strong base was reported to generate CO from formates, see:
    • 10a Carpentier J.-F, Castanet Y, Brocard J, Mortreux A, Petit F. Tetrahedron Lett. 1991; 32: 4705
    • 10b Ma FQ, Lu DS, Guo ZY. J. Mol. Catal. 1993; 78: 309
    • 10c Several transition-metal catalysts are known to decompose formates into CO and alcohols, see: Jenner G, Nahmed EM, Leismann H. J. Organomet. Chem. 1990; 387: 315
    • 11a Korsager S, Taaning RH, Skrydstrup T. J. Am. Chem. Soc. 2013; 135: 2891
    • 11b Wu L, Liu Q, Fleischer I, Jackstell R, Beller M. Nat. Commun. 2014; 5: 3091
  • 12 Kisfaludy L, Ötvös LJr. Synthesis 1987; 510
  • 13 Konishi H, Ueda T, Muto T, Manabe K. Org. Lett. 2012; 14: 4722
  • 14 Reppe W, Kroper H, Pistor HJ, Schlenck H. Justus Liebigs Ann. Chem. 1953; 582: 38
  • 15 Isnard P, Denise B, Sneeden RP. A. J. Organomet. Chem. 1983; 256: 135
    • 16a Mlekuz M, Joo F, Alper H. Organometallics 1987; 6: 1591
    • 16b Ueda W, Yokoyama T, Morikawa Y, Moro-oka Y, Ikawa T. J. Mol. Catal. 1988; 44: 197
    • 16c Kondo T, Yoshii S, Tsuji Y, Watanabe Y. J. Mol. Catal. 1989; 50: 31
    • 16d Keim W, Becker J. J. Mol. Catal. 1989; 54: 95
    • 16e Lin IJ. B, Alper H. J. Chem. Soc., Chem. Commun. 1989; 248
    • 16f Nahmed EM, Jenner G. J. Mol. Catal. 1990; 59: L15
    • 16g Grévin J, Kalck P. J. Organomet. Chem. 1994; 476: C23
    • 16h Legrand C, Castanet Y, Mortreux A, Petit F. J. Chem. Soc., Chem. Commun. 1994; 1173
    • 16i Suzuki Y, Katoh H, Ishii Y, Hidai M. J. Mol. Catal. A 1995; 95: 129
    • 16j Lugan N, Lavigne G, Soulié JM, Fabre S, Kalck P, Saillard JY, Halet JF. Organometallics 1995; 14: 1712
    • 16k Fabre S, Kalck P, Lavigne G. Angew. Chem. Int. Ed. 1997; 36: 1092
    • 16l Kondo T, Okada T, Mitsudo T. Organometallics 1999; 18: 4123
    • 17a Ko S, Na Y, Chang S. J. Am. Chem. Soc. 2002; 124: 750
    • 17b Park EJ, Lee JM, Han H, Chang S. Org. Lett. 2006; 8: 4355
    • 17c Armanino N, Lafrance M, Carreira EM. Org. Lett. 2014; 16: 572
  • 18 Katafuchi Y, Fujihara T, Iwai T, Terao J, Tsuji Y. Adv. Synth. Catal. 2011; 353: 475
    • 19a Dallmann K, Buffon R. J. Mol. Catal. A 2001; 172: 81
    • 19b Ammar HB, Nôtre JL, Salem M, Kaddachi MT, Toupet L, Renaud J.-L, Bruneau C, Dixneuf PH. Eur. J. Inorg. Chem. 2003; 4055
  • 20 Hydroesterification followed by intramolecular lactonization has been described, see: Wang L, Floreancig PE. Org. Lett. 2004; 6: 4207
  • 21 Wang H, Dong B, Wang Y, Li J, Shi Y. Org. Lett. 2014; 16: 186
    • 22a Jenner G, Taleb AB. J. Organomet. Chem. 1994; 470: 257
    • 22b Ko S, Lee C, Choi M.-G, Na Y, Chang S. J. Org. Chem. 2003; 68: 1607
    • 23a Matthews JS, Ketter DC, Hall RF. J. Org. Chem. 1970; 35: 1694
    • 23b Iwasa N, Terashita M, Arai M, Takezawa N. React. Kinet. Catal. Lett. 2001; 74: 93
    • 23c O’Neill BJ, Guerbuez EI, Dumesic JA. J. Catal. 2012; 290: 193
  • 24 Ueda T, Konishi H, Manabe K. Org. Lett. 2012; 14: 3100
  • 25 Ueda T, Konishi H, Manabe K. Tetrahedron Lett. 2012; 53: 5171
  • 26 Schoenberg A, Bartoletti I, Heck RF. J. Org. Chem. 1974; 39: 3318
  • 27 Fujihara T, Hosoki T, Katafuchi Y, Iwai T, Terao J, Tsuji Y. Chem. Commun. 2012; 48: 8012
  • 28 Li H, Neumann H, Beller M, Wu X.-F. Angew. Chem. Int. Ed. 2014; 53: 3183
  • 29 Ueda T, Konishi H, Manabe K. Org. Lett. 2012; 14: 5370
    • 30a Ozawa F, Soyama H, Yanagihara H, Aoyama I, Takino H, Izawa K, Yamamoto T, Yamamoto A. J. Am. Chem. Soc. 1985; 107: 3235
    • 30b Mägerlein W, Beller M, Indolese AF. J. Mol. Catal. A: Chem. 2000; 156: 213
  • 31 Konishi H, Ueda T, Manabe K. Org. Synth. 2014; 91: 39
  • 32 Ueda T, Konishi H, Manabe K. Angew. Chem. Int. Ed. 2013; 52: 8611
    • 33a Schoenberg A, Heck RF. J. Am. Chem. Soc. 1974; 96: 7761
    • 33b Klaus S, Neumann H, Zapf A, Strübing D, Hübner S, Almena J, Riermeier T, Groß P, Sarich M, Krahnert W.-R, Rossen K, Beller M. Angew. Chem. Int. Ed. 2006; 45: 154
    • 33c Ashfield L, Barnard JF. J. Org. Process Res. Dev. 2007; 11: 39
  • 34 Harding AP, Popelierm PL. A. Phys. Chem. Chem. Phys. 2011; 13: 11264
    • 35a Cochet T, Bellosta V, Greiner A, Roche D, Cossy J. Synlett 2011; 1920
    • 35b Chiyomaru I, Yoshinaga E, Ito H. JP 48008500, 1973
  • 36 Koppel I, Koppel J, Leito I, Pihl V, Grahn L, Ragnarsson U. J. Chem. Res. 1994; 6: 1173
  • 37 Ueda T, Konishi H, Manabe K. Org. Lett. 2013; 15: 5370
  • 38 Bertho J.-N, Loffet A, Pinel C, Reuther F, Sennyey G. Tetrahedron Lett. 1991; 32: 1303
    • 39a Lippert JW. III. ARKIVOC 2005; (xiv): 87
    • 39b Singh RP, Shreeve JM. Synthesis 2002; 2561
    • 40a Sakakura T, Chaisupakitsin M, Hayashi T, Tanaka M. J. Organomet. Chem. 1987; 334: 205
    • 40b Okano T, Harada N, Kiji J. Bull. Chem. Soc. Jpn. 1992; 65: 1741