Synlett 2013; 24(15): 2014-2018
DOI: 10.1055/s-0033-1338967
letter
© Georg Thieme Verlag Stuttgart · New York

1-Hydroxy-2-methyl-2-propyl Isocyanide (HMPI) as a New Convertible Isocyanide for the Ugi Four-Component-Coupling Reaction

Masato Oikawa*
Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan   Fax: +81(45)7872403   Email: [email protected]
,
Yutaro Sugamata
Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan   Fax: +81(45)7872403   Email: [email protected]
,
Manami Chiba
Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan   Fax: +81(45)7872403   Email: [email protected]
,
Koichi Fukushima
Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan   Fax: +81(45)7872403   Email: [email protected]
,
Yuichi Ishikawa
Yokohama City University, Seto 22-2, Kanazawa-ku, Yokohama 236-0027, Japan   Fax: +81(45)7872403   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 05 June 2013

Accepted: 27 June 2013

Publication Date:
08 August 2013 (online)


Abstract

The Ugi reaction is a useful four-component coupling reaction for α-(acylamino)amide. However, selective transformation of the two amides is generally difficult. Here, we report 1-hydroxy-2-methyl-2-propyl isocyanide (HMPI) as a new member of a ‘convertible isocyanide’ class used to solve the problem. HMPI is odorless and shows good reactivity in the Ugi reaction to give N-(1-hydroxy-2-methyl-2-propyl) amides, which are smoothly converted into esters upon Zn(OTf)2-mediated solvolysis. Overall, structurally diverse α-amino acid esters are readily accessible in two steps by using HMPI.

 
  • References and Notes

    • 1a Ugi I. Angew. Chem. 1959; 71: 386
    • 1b Ugi I, Steinbruckner C. Angew. Chem. 1960; 72: 267
    • 2a Dömling A, Ugi I. Angew. Chem. Int. Ed. 2000; 39: 3168
    • 2b Dömling A. Chem. Rev. 2005; 106: 17
    • 2c El Kaim L, Grimaud L. Tetrahedron 2009; 65: 2153
    • 3a Sutherlin DP, Stark TM, Hughes R, Armstrong RW. J. Org. Chem. 1996; 61: 8350
    • 3b Obrecht D, Abrecht C, Grieder A, Villalgordo JM. Helv. Chim. Acta 1997; 80: 65
    • 3c Studer A, Jeger P, Wipf P, Curran DP. J. Org. Chem. 1997; 62: 2917
  • 4 van Berkel SS, Bögels BG. M, Wijdeven MA, Westermann B, Rutjes FP. J. T. Eur. J. Org. Chem. 2012; 3543
    • 5a Ikoma M, Oikawa M, Gill MB, Swanson GT, Sakai R, Shimamoto K, Sasaki M. Eur. J. Org. Chem. 2008; 5215
    • 5b Oikawa M, Ikoma M, Sasaki M, Gill MB, Swanson GT, Shimamoto K, Sakai R. Eur. J. Org. Chem. 2009; 5531
    • 5c Oikawa M, Ikoma M, Sasaki M, Gill MB, Swanson GT, Shimamoto K, Sakai R. Bioorg. Med. Chem. 2010; 18: 3795
    • 5d Oikawa, M.; Kasori, Y.; Katayama, L.; Murakami, E.; Oikawa Y.; Ishikawa, Y. manuscript in preparation
  • 6 Flynn DL, Zelle RE, Grieco PA. J. Org. Chem. 1983; 48: 2424
  • 7 Juknaitė L, Sugamata Y, Tokiwa K, Ishikawa Y, Takamizawa S, Eng A, Sakai R, Pickering DS, Frydenvang K, Swanson GT, Kastrup JS, Oikawa M. J. Med. Chem. 2013; 56: 2283
    • 8a Keating TA, Armstrong RW. J. Am. Chem. Soc. 1995; 117: 7842
    • 8b Armstrong RW, Combs AP, Tempest PA, Brown SD, Keating TA. Acc. Chem. Res. 1996; 29: 123
    • 8c Keating TA, Armstrong RW. J. Org. Chem. 1996; 61: 8935
    • 8d Keating TA, Armstrong RW. J. Am. Chem. Soc. 1996; 118: 2574
  • 9 Lindhorst T, Bock H, Ugi I. Tetrahedron 1999; 55: 7411
    • 10a Rikimaru K, Yanagisawa A, Kan T, Fukuyama T. Heterocycles 2007; 73: 403
    • 10b Rikimaru K, Yanagisawa A, Kan T, Fukuyama T. Synlett 2004; 41
    • 11a Gilley CB, Buller MJ, Kobayashi Y. Org. Lett. 2007; 9: 3631
    • 11b Isaacson J, Loo M, Kobayashi Y. Org. Lett. 2008; 10: 1461
    • 11c Isaacson J, Kobayashi Y. Angew. Chem. Int. Ed. 2009; 48: 1845
  • 12 Gilley CB, Kobayashi Y. J. Org. Chem. 2008; 73: 4198
    • 13a Linderman RJ, Binet S, Petrich SR. J. Org. Chem. 1998; 64: 336
    • 13b Zhou H, Zhang W, Yan B. J. Comb. Chem. 2009; 12: 206
  • 14 To avoid isolation of unpleasant-smelling isocyanide, an in situ preparation method has been reported, see: El Kaim L, Grimaud L, Schiltz A. Org. Biomol. Chem. 2009; 7: 3024
  • 15 Kita Y, Nishii Y, Higuchi T, Mashima K. Angew. Chem. Int. Ed. 2012; 51: 5723
  • 16 Barluenga J, de Prado A, Santamaría J, Tomás M. Organometallics 2005; 24: 3614
  • 17 Meyers AI, Collington EW. J. Am. Chem. Soc. 1970; 92: 6676
  • 18 Spectroscopic data for HMPI (1): IR (film): 3399, 2985, 2941, 2135, 1657 cm–1. 1H NMR (400 MHz, CDCl3): δ = 4.03 (br, 1 H), 3.38 (s, 2 H), 1.29 (s, 6 H); 13C NMR (100 MHz, CDCl3): δ = 152.5, 68.9, 58.9, 25.2 (×2). HRMS (ESI, +): m/z [M + H]+ calcd for C5H10ON: 100.0762; found: 100.0764.
  • 19 To a stirred solution of aldehyde (0.0980 mmol) in methanol (0.5 mL) at r.t., were added amine (0.0650 mmol), carboxylic acid (0.0650 mmol), and HMPI (1, 9.0 mg, 0.091 mmol). After stirring at r.t. for 40 h, the mixture was concentrated under reduced pressure. The residue was dissolved in CHCl3 (1 mL) and washed successively with sat. aq Na2CO3 (1 mL), sat. aq NH4Cl (1 mL), and brine (1 mL). The organic layer was dried over Na2SO4 and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (1 g; hexane–EtOAc) to give the Ugi product X.
  • 20 Nicolaou KC, Boddy CN. C, Li H, Koumbis AE, Hughes R, Natarajan S, Jain NF, Ramanjulu JM, Bräse S, Solomon ME. Chem. Eur. J. 1999; 5: 2602
  • 21 Paulvannan K. Tetrahedron Lett. 1999; 40: 1851
  • 22 Oikawa M, Ikoma M, Sasaki M. Tetrahedron Lett. 2005; 46: 415
  • 23 Takeuchi R, Tanabe K, Tanaka S. J. Org. Chem. 2000; 65: 1558
  • 24 A mixture of diamide X (0.011 mmol), zinc trifluoromethanesulfonate (0.20 mg, 0.00055 mmol), and diethyl carbonate (0.0027 mL, 0.022 mmol) in 1-butanol (0.200 mL) was heated to reflux with stirring for 39 h. The mixture was then concentrated under reduced pressure, dissolved in CHCl3 (1 mL), and washed with water (1 mL). The aqueous layer was extracted with CHCl3 (2 × 1 mL) and the combined organic layer was washed with brine (1 mL), dried over Na2SO4, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (0.6 g; hexane–EtOAc) to give butyl ester Y.
    • 25a Darwish N, Eggers PK, Da Silva P, Zhang Y, Tong Y, Ye S, Gooding JJ, Paddon-Row MN. Chem. Eur. J. 2012; 18: 283
    • 25b Kirchwehm Y, Damme A, Kupfer T, Braunschweig H, Krueger A. Chem. Commun. 2012; 48: 1502
    • 26a Jiang L, Hartley RC, Chan T.-H. Chem. Commun. 1996; 2193
    • 26b Ando H, Manabe S, Nakahara Y, Ito Y. J. Am. Chem. Soc. 2001; 123: 3848
    • 26c Figlus M, Wellaway N, Cooper AW. J, Sollis SL, Hartley RC. ACS Comb. Sci. 2011; 13: 280