References
For reviews of multicomponent reactions with isonitriles, see:
<A NAME="RU21003ST-1A">1a</A>
Hulme C.
Gore V.
Curr. Med. Chem.
2003,
10:
51
<A NAME="RU21003ST-1B">1b</A>
Dömling A.
Ugi I.
Angew. Chem. Int. Ed.
2000,
39:
3168
<A NAME="RU21003ST-1C">1c</A>
Gokel G.
Lüdke G.
Ugi I. In
Isonitrile Chemistry
Ugi I.
Academic;
New York:
1971.
p.145-199
<A NAME="RU21003ST-2A">2a</A>
Ugi I.
Myer R.
Fetzer U.
Steinbrückner C.
Angew. Chem.
1959,
71:
386
<A NAME="RU21003ST-2B">2b</A>
Ugi I.
Steinbrückner C.
Angew. Chem.
1960,
72:
267
<A NAME="RU21003ST-3A">3a</A>
Endo A.
Yanagisawa A.
Abe M.
Tohma S.
Kan T.
Fukuyama T.
J. Am. Chem. Soc.
2002,
124:
6552
<A NAME="RU21003ST-3B">3b</A>
Dömling A.
Ugi I.
Angew. Chem. Int. Ed.
2000,
39:
3200
<A NAME="RU21003ST-4A">4a</A> For a recent example of the stereoselective Ugi 4CC reaction using a chiral amine
component, see:
Ross GF.
Herdtweck E.
Ugi I.
Tetrahedron
2002,
58:
6127 ; and references therein
<A NAME="RU21003ST-4B">4b</A> Recently, the first example of catalytic asymmetric α-addition of isonitrile
to an aldehyde was reported, see:
Denmark SE.
Fan Y.
J. Am. Chem. Soc.
2003,
125:
7825
<A NAME="RU21003ST-5A">5a</A>
Keating TA.
Armstrong RW.
J. Am. Chem. Soc.
1996,
118:
2574
<A NAME="RU21003ST-5B">5b</A>
Strocker AM.
Keating TA.
Tempest PA.
Armstrong RW.
Tetrahedron Lett.
1996,
37:
1149
<A NAME="RU21003ST-6">6</A>
Lindhorst T.
Bock H.
Ugi I.
Tetrahedron
1999,
55:
7411
<A NAME="RU21003ST-7">7</A>
Geller J.
Ugi I.
Chem. Scr.
1983,
22:
85
<A NAME="RU21003ST-8">8</A>
Mjalli AMM.
Sarshar S.
Baiga TJ.
Tetrahedron Lett.
1996,
37:
2943
<A NAME="RU21003ST-9">9</A>
Linderman RJ.
Binet S.
Petrich SR.
J. Org. Chem.
1999,
64:
336
<A NAME="RU21003ST-10A">10a</A> For the use of N-tert-butoxycarbonylation to activate amides, see:
Flynn DL.
Zelle RE.
Grieco PA.
J. Org. Chem.
1983,
48:
2425
<A NAME="RU21003ST-10B">10b</A> For its application to the Ugi 4CC reaction, see:
Hulme C.
Ma L.
Cherrier M.-P.
Romano JJ.
Morton G.
Tetrahedron Lett.
2000,
41:
1883
For the use of N-nitrosation to activate amides, see:
<A NAME="RU21003ST-11A">11a</A>
White EH.
J. Am. Chem. Soc.
1955,
77:
6011
<A NAME="RU21003ST-11B">11b</A>
Evans DA.
Carter PH.
Dinsmore CJ.
Barrow JC.
Katz JI.
Kung DW.
Tetrahedron Lett.
1997,
38:
4535
<A NAME="RU21003ST-11C">11c</A>
Berenguer R.
Garcia J.
Vilarrasa J.
Synthesis
1989,
305
<A NAME="RU21003ST-11D">11d</A> For its applications to the Ugi 4CC reaction, see:
Isenring HP.
Hofheinz W.
Synthesis
1981,
385
<A NAME="RU21003ST-11E">11e</A> Also see:
Isenring HP.
Hofheinz W.
Tetrahedron
1983,
39:
2591
<A NAME="RU21003ST-12">12</A>
Synthesis of Isonitrile 9: To a stirred solution of 4,4-dimethyloxazoline (0.997 g, 10.1 mmol) in THF (10 mL)
under Ar atmosphere at -78 °C, was added dropwise n-BuLi (1.1 M solution in hexane, 9.60 mL, 10.6 mmol) in a duration of 5 min and stirred
at same temperature for 1 h followed by dropwise addition of phenyl chloroformate
(1.40 mL, 10.7 mmol). After stirring for 5 min, the reaction mixture was warmed to
ambient temperature and diluted with Et2O, and water was added to the mixture. The organic layer was separated and washed
with brine, dried over Na2SO4 and filtered. The solvent was removed under reduced pressure, the resulting residue
was purified by silica gel chromatography (EtOAc-hexane = 1:9-1:4) to afford 1.10
g of 9 (49.7%). IR (film): 2991, 2136, 1767, 1592, 1496, 1457, 1401, 1378, 1258, 1074, 1024,
970, 879, 835, 775, 735 cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.45-7.19 (m, 5 H), 4.21 (s, 2 H), 1.53 (s, 6 H). 13C NMR (100 MHz, CDCl3): δ = 156.1, 153.1, 150.8, 129.4, 126.1, 120.8, 72.9, 56.1, 25.6. HRMS (FAB): m/z calcd for C12H13NO3: 219.0895; found: 219.0900.
<A NAME="RU21003ST-13">13</A>
Meyers AI.
Collington EW.
J. Am. Chem. Soc.
1970,
92:
6676
<A NAME="RU21003ST-14">14</A>
General Procedure for the Ugi 4CC with Isonitrile 9, Synthesis of 10a: To a stirred solution of isonitrile 9 (223 mg, 1.02 mmol), isobutylaldehyde (0.310 mL, 3.40 mmol), and benzoic acid (128
mg, 1.05 mmol) in MeOH (3.5 mL, 0.19 M) was added dropwise benzylamine (74 µL, 0.68
mmol) within 2 min at ambient temperature. After stirring for 60 min, the solvent
was removed under reduced pressure. The resultant crude mixture was purified by silica
gel chromatography (EtOAc-hexane = 1:9-1:2) to afford 310 mg of 10a (91%) as a pale yellow foam. IR (film): 3301, 3063, 2968, 1764, 1680, 1620, 1545,
1496, 1457, 1367, 1263, 1211, 1066, 963, 918, 774, 734 cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.60-7.05 (m, 15 H), 4.67 (d, J = 16 Hz, 1 H), 4.45 (m, 2 H), 4.29 (d, J = 11 Hz, 2 H), 2.80 (m, 1 H), 1.36 (m, 6 H), 1.02 (m, 1 H). 13C NMR (100 MHz, CDCl3): δ = 174.0, 170.2, 153.6, 151.1, 136.6, 136.5, 129.8, 129.5, 128.5, 128.4, 127.8,
127.7, 126.7, 126.0, 121.0, 76.7, 72.1, 54.0, 52.8, 27.2, 24.3, 23.8, 19.8, 19.5.
HRMS (FAB): m/z calcd for C30H34N2O5: 502.2468; found: 502.2485.
<A NAME="RU21003ST-15">15</A>
General Procedure for the Synthesis of N
-Acyloxazol-idinones, Synthesis of 11a: To a stirred solution of 10a (220 mg, 0.44 mmol) in anhyd THF (2.0 mL, 0.22 M) at 0 °C was added freshly activated
MS 4 Å (powder, 280 mg), and stirred for 10 min, followed by dropwise addition of
1.0 M
t-BuOK in t-BuOH (0.45 mL, 0.45 mmol) in a duration of
2 min. After stirring for 5 min, 10% aq citric acid was added and the mixture was
extracted with EtOAc. The combined organic layer was washed with brine, dried over
MgSO4 and filtered. The solvent was removed under reduced pressure, the resultant crude
mixture was purified by silica gel chromatography (EtOAc-hexane = 1:9-1:2) to afford
11a (149 mg, 83%) as a pale yellow foam. IR (film): 2968, 2360, 1779, 1701, 1646, 1496,
1374, 1305, 1231, 1173, 1089, 1031, 761, 734 cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.36-7.19 (m, 10 H), 5.63 (m, 1 H), 4.88 (m, 2 H), 3.94 (m, 2 H), 2.43 (m,
1 H), 1.49 (s, 3 H), 1.33 (s, 3 H), 0.93 (d, J = 15 Hz, 6 H). 13C NMR (100 MHz, CDCl3): δ = 175.8, 173.9, 172.3, 152.9, 138.7, 136.7, 129.6, 128.6, 128.3, 128.2, 127.4,
126.8, 126.3, 75.1, 61.0, 29.5, 24.3, 23.8, 19.4, 18.6. HRMS (FAB): m/z calcd for C24H28N2O4: 408.2049; found: 408.2033.
<A NAME="RU21003ST-16">16</A>
In the absence of MS 4 Å, the reaction resulted in low yields, accompanied by the
N-acylamino alcohols 12 and/or carboxylic acid 13 (Figure
[2]
).
<A NAME="RU21003ST-17">17</A>
Evans DA.
Bartroli J.
Shih TL.
J. Am. Chem. Soc.
1981,
103:
2127
<A NAME="RU21003ST-18">18</A> For recent examples, see:
Orita A.
Nagano Y.
Hirano J.
Otera J.
Synlett
2001,
637 ; and the detailed references cited therein
For C-N bond cleavage in N-acyl-4,4-dimethyl-2-oxazolidinones, see:
<A NAME="RU21003ST-19A">19a</A> MeOMgBr:
Chevliakov MV.
Montgomery J.
J. Am. Chem. Soc.
1999,
121:
11139
<A NAME="RU21003ST-19B">19b</A> Me(OMe)2:
Kanemasa S.
Kanai T.
J. Am. Chem. Soc.
2000,
122:
10710
<A NAME="RU21003ST-19C">19c</A> Sm(OTf)3-MeOH:
Sibi MP.
Gorikunti U.
Liu M.
Tetrahedron
2002,
58:
8357
<A NAME="RU21003ST-19D">19d</A> NaOH-t-BuOH:
Ito Y.
Terashima S.
Tetrahedron
1991,
47:
2821
<A NAME="RU21003ST-20A">20a</A>
Tokuyama H.
Yokoshima S.
Lin S.-C.
Li L.
Fukuyama T.
Synthesis
2002,
1121
<A NAME="RU21003ST-20B">20b</A>
Tokuyama H.
Yokoshima S.
Yamashita T.
Fukuyama T.
Tetrahedron Lett.
1998,
39:
3189
<A NAME="RU21003ST-21A">21a</A>
Nishide K.
Ohsugi S.
Shiraki H.
Tamakita H.
Node M.
Org. Lett.
2001,
3:
3121
<A NAME="RU21003ST-21B">21b</A>
Node M.
Kumar K.
Nishide K.
Ohsugi S.
Miyamoto T.
Tetrahedron Lett.
2001,
42:
9207
<A NAME="RU21003ST-22">22</A>
Tokuyama H.
Miyazaki T.
Yokoshima S.
Fukuyama T.
Synlett
2003,
1512
<A NAME="RU21003ST-23">23</A>
General Procedure for the Synthesis of Thiolesters, Synthesis of 16a: To a solution of n-dodecanethiol (0.26 mL, 1.08 mmol) in anhyd THF (2.5 mL) at 0 °C was added dropwise
n-BuLi (1.0 M solution in hexane, 0.40 mL, 0.40 mmol) for 2 min. After stirring for
5 min, the resulting white suspension was added to a solution of N-acyloxazolidinone 11a (93 mg, 0.23 mmol) in THF (1.5 mL) at 0 °C. After stirring for 10 min, 10% aq citric
acid was added and the mixture was extracted with EtOAc. The combined organic layer
was washed with brine, dried over MgSO4 and filtered. The solvent was removed under reduced pressure, the resultant crude
mixture was purified by silica gel chromatography (EtOAc-hexane = 1:9-1:2) to afford
16a (94 mg, 83%) as a white solid. IR(film): 2915, 2854, 1684, 1653, 1457, 1300, 1129,
731 cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.58-6.98 (m, 10 H), 4.88 (d, J = 14 Hz, 1 H), 4.65 (d, J = 15 Hz, 1 H), 4.10 (d, J = 7.3 Hz, 1 H), 2.77 (t,
J = 15 Hz, 2 H), 2.43 (m, 1 H), 1.30-1.00 (m, 20 H), 0.88 (t, J = 14 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 196.8, 173.5, 138.1, 136.2, 129.7, 128.5, 128.3, 128.1, 127.8, 127.5, 126.8,
73.5, 62.7, 50.3, 45.8, 31.9, 29.6, 29.5, 29.4, 29.1, 29.0, 22.7, 19.5, 19.1, 14.1.
HRMS (FAB): m/z calcd for C24H28N2O4: 495.3171; found: 495.3169.
<A NAME="RU21003ST-24">24</A>
In order to avoid the thiolate addition to the carbonyl group on the oxazolidinone
ring, the reaction should be carried out at a temperature lower than 0 °C. Reactions
at higher temperature often provided the undesired N-acylamino alcohols 12. This tendency was notably observed in compounds possessing a bulky substituent at
the Z-position.