Synthesis 2014; 46(14): 1823-1835
DOI: 10.1055/s-0033-1338653
review
© Georg Thieme Verlag Stuttgart · New York

Lewis Base Catalysis of Three n–π* Mediated Reactions with N-Heterocyclic Carbenes (NHCs), Isothioureas, Bicyclic Tertiary Amines, and Electron-Rich Pyridyls

Lisa Candish
School of Chemistry, Monash University, Clayton 3800, Melbourne, Victoria, Australia   Fax: +61(3) 99054597   Email: david.lupton@monash.edu
,
Yuji Nakano
School of Chemistry, Monash University, Clayton 3800, Melbourne, Victoria, Australia   Fax: +61(3) 99054597   Email: david.lupton@monash.edu
,
David W. Lupton*
School of Chemistry, Monash University, Clayton 3800, Melbourne, Victoria, Australia   Fax: +61(3) 99054597   Email: david.lupton@monash.edu
› Author Affiliations
Further Information

Publication History

Received: 02 March 2014

Accepted after revision: 31 March 2014

Publication Date:
12 June 2014 (online)


Abstract

Lewis base catalysis by lone pair donation into anti-bonding π orbitals (n–π*) is a growing field with a range of Lewis bases capable of this type of catalysis. In this review, catalysis of the Morita–Baylis–Hillman reaction, the Steglich rearrangement, and the annulation of α,β-unsaturated acyl Lewis adducts are discussed, using N-heterocyclic carbene (NHC), isothiourea, bicyclic tertiary amine and electron-rich pyridyl catalysts. In many cases, each of these popular Lewis base catalysts is viable for the given reaction, with the degree of utility defined by the catalyst’s nucleophilicity and Lewis basicity.

1 Introduction to Lewis Base Catalysis

2 Enolates from 1,4-Addition: Morita–Baylis–Hillman Reaction

3 O→C Carboxyl Transfer: Steglich Rearrangement

4 Annulations of α,β-Unsaturated Acyl Lewis Base Adducts

5 Summary and Outlook

 
  • References

  • 1 For a summary of Lewis acid/base interactions, see: Jensen WB. Chem. Rev. 1978; 78: 1
  • 2 Denmark SE, Beutner GL. Angew. Chem. Int. Ed. 2008; 47: 1560
  • 3 NHCs: Enders D, Niemeier O, Hensler A. Chem. Rev. 2007; 107: 5606
  • 4 Isothiourea catalysis: Taylor JE, Bull SD, Williams JM. J. Chem. Soc. Rev. 2012; 41: 2109

    • Amines:
    • 5a France S, Guerin DJ, Miller SJ, Lectka T. Chem. Rev. 2003; 103: 2985
    • 5b Yeboah EM. O, Yeboah SO, Singh GS. Tetrahedron 2011; 67: 1725
  • 6 Electron-rich pyridyls: Wurz RP. Chem. Rev. 2007; 107: 5570
    • 7a Mayr H, Patz M. Angew. Chem., Int. Ed. Engl. 1994; 33: 938
    • 7b Mayr H, Bug T, Gotta MF, Hering N, Irrgang B, Janker B, Kempf B, Loos R, Ofial AR, Remennikov G, Schimmel H. J. Am. Chem. Soc. 2001; 123: 9500
    • 8a Enders D, Breuer K, Teles JH. Helv. Chim. Acta 1996; 79: 1217

    • For properties and stoichiometric reactions, see:
    • 8b Enders D, Breuer K, Raabe G, Runsink J, Teles JH, Melder J.-P, Ebel K, Brode S. Angew. Chem., Int. Ed. Engl. 1995; 34: 1021
  • 9 Maji B, Breugst M, Mayr H. Angew. Chem. Int. Ed. 2011; 50: 6915
  • 10 Brotzel F, Kempf B, Singer T, Zipse H, Mayr H. Chem. Eur. J. 2007; 13: 336
  • 11 For a review of the physical properties of DMAP and derivatives, see: De Rycke N, Couty F, David OR. P. Chem. Eur. J. 2011; 17: 12852
  • 12 Kempf B, Mayr H. Chem. Eur. J. 2005; 11: 917
  • 13 Maji B, Joannesse C, Nigst T, Smith AD, Mayr H. J. Org. Chem. 2011; 76: 5104
  • 14 Wei Y, Sastry GN, Zipse H. J. Am. Chem. Soc. 2008; 130: 3473
  • 15 Morita K.-i, Suzuki Z, Hirose H. Bull. Chem. Soc. Jpn. 1968; 41: 2815
  • 16 Baylis AB, Hillman ME. D. Ger. Offen. 2155113, 1972 ; Chem. Abstr. 1972, 77, 34174q
  • 17 Hoffmann HM. R, Rabe J. Angew. Chem., Int. Ed. Engl. 1983; 22: 795
  • 18 He L, Jian T.-Y, Ye S. J. Org. Chem. 2007; 72: 7466
  • 19 Aggarwal VK, Mereu A. Chem. Commun. 1999; 2311
  • 20 Leadbeater NE, van der Pol C. J. Chem. Soc., Perkin Trans. 1 2001; 2831
  • 21 Octavio R, de Souza MA, Vasconcellos ML. A. A. Synth. Commun. 2003; 33: 1383
  • 22 Hill JS, Isaacs NS. J. Phys. Org. Chem. 1990; 3: 285
    • 23a Price KE, Broadwater SJ, Jung HM, McQuade DT. Org. Lett. 2005; 7: 147
    • 23b Price KE, Broadwater SJ, Walker BJ, McQuade DT. J. Org. Chem. 2005; 70: 3980
    • 24a Aggarwal VK, Fulford SY, Lloyd-Jones GC. Angew. Chem. Int. Ed. 2005; 44: 1706
    • 24b Robiette R, Aggarwal VK, Harvey JN. J. Am. Chem. Soc. 2007; 129: 15513
  • 25 This byproduct was first observed by Drewes: Drewes SE, Emslie ND, Karodia N, Khan AA. Chem. Ber. 1990; 123: 1447
  • 26 For a discussion on the phosphine- and amine-catalyzed reaction, see: Ciganek E. Org. React. 1997; 51: 201
  • 27 Maher DJ, Connon SJ. Tetrahedron Lett. 2004; 45: 1301
  • 28 Baidya M, Mayr H. Chem. Commun. 2008; 1792
  • 29 The MBH is known to be more facile with electron-poor substrates: Fort Y, Berthe MC, Caubere P. Tetrahedron 1992; 48: 6371
  • 30 Maji B, Stephenson DS, Mayr H. ChemCatChem 2012; 4: 993
  • 31 Wolfe JP, Tomori H, Sadighi JP, Yin J, Buchwald SL. J. Org. Chem. 2000; 65: 1158
  • 32 He Z, Tang X, Chen Y, He Z. Adv. Synth. Catal. 2006; 348: 413
  • 33 Perlmutter P, Teo CC. Tetrahedron Lett. 1984; 25: 5951
  • 34 Regiani T, Santos VG, Godói MN, Vaz BG, Eberlin MN, Coelho F. Chem. Commun. 2011; 47: 6593
  • 35 Verma P, Verma P, Sunoj RB. Org. Biomol. Chem. 2014; 12: 2176

    • For studies on the phosphine-catalyzed reaction, see:
    • 36a Buskens P, Klankermayer J, Leitner W. J. Am. Chem. Soc. 2005; 127: 16762
    • 36b Lindner C, Liu Y, Karaghiosoff K, Maryasin B, Zipse H. Chem. Eur. J. 2013; 19: 6429
    • 37a Shi M, Xu Y.-M. Chem. Commun. 2001; 1876
    • 37b Shi M, Xu Y.-M, Zhao G.-L, Wu X.-F. Eur. J. Org. Chem. 2002; 3666
    • 38a Shi M, Xu Y.-M. Eur. J. Org. Chem. 2002; 696
    • 38b Shi M, Xu Y.-M. J. Org. Chem. 2004; 69: 417
  • 39 Baidya M. PhD Dissertation. Ludwig-Maximilians-Universität München; Germany: 2009
    • 40a Steglich W, Höfle G. Angew. Chem. 1968; 80: 78
    • 40b Steglich W, Höfle G. Tetrahedron Lett. 1970; 4727
  • 41 Ruble JC, Fu GC. J. Am. Chem. Soc. 1998; 120: 11532
    • 42a Ruble JC, Latham HA, Fu GC. J. Am. Chem. Soc. 1997; 119: 1492
    • 42b Ruble JC, Tweddell J, Fu GC. J. Org. Chem. 1998; 63: 2794
    • 42c Liang J, Ruble JC, Fu GC. J. Org. Chem. 1998; 63: 3154
  • 43 Shaw SA, Aleman P, Vedejs E. J. Am. Chem. Soc. 2003; 125: 13368
  • 44 Seitzberg JG, Dissing C, Søtofte I, Norrby P.-O, Johannsen M. J. Org. Chem. 2005; 70: 8332
  • 45 Nguyen HV, Butler DC. D, Richards CJ. Org. Lett. 2006; 8: 769
  • 46 De CK, Mittal N, Seidel D. J. Am. Chem. Soc. 2011; 133: 16802
  • 47 Dietz FR, Gröger H. Synlett 2008; 663
  • 48 Joannesse C, Johnston CP, Concellón C, Simal C, Philp D, Smith AD. Angew. Chem. Int. Ed. 2009; 48: 8914
  • 49 Dietz FR, Gröger H. Synthesis 2009; 4208
  • 50 Viswambharan B, Okimura T, Suzuki S, Okamoto S. J. Org. Chem. 2011; 76: 6678

    • For selected early examples, see:
    • 51a Miller SJ, Copeland GT, Papaioannou N, Horstmann TE, Ruel EM. J. Am. Chem. Soc. 1998; 120: 1629
    • 51b Horstmann TE, Guerin DJ, Miller SJ. Angew. Chem. Int. Ed. 2000; 39: 3635
    • 51c Zhao Y, Rodrigo J, Hoveyda AH, Snapper ML. Nature 2006; 443: 67
  • 52 Zhang Z, Xie F, Jia J, Zhang W. J. Am. Chem. Soc. 2010; 132: 15939
  • 53 Campbell CD, Collett CJ, Thomson JE, Slawin AM. Z, Smith AD. Org. Biomol. Chem. 2011; 9: 4205
  • 54 Campbell CD, Concellón C, Smith AD. Tetrahedron: Asymmetry 2011; 22: 797

    • For early examples of this type of NHC catalysis, see:
    • 55a Zietler K. Org. Lett. 2006; 8: 637
    • 55b Maki BE, Chan A, Phillips EM, Scheidt KA. Org. Lett. 2007; 9: 371

      For access to acyl azoliums by redox approaches, see reference 3 and
    • 56a Vora HU, Wheeler P, Rovis T. Adv. Synth. Catal. 2012; 354: 1617
    • 56b Douglas J, Churchill G, Smith AD. Synthesis 2012; 44: 2295
  • 57 Bappert E, Müller P, Fu G. Chem. Commun. 2006; 2604
  • 58 For a recent short highlight on this topic, see: Chauhan P, Enders D. Angew. Chem. Int. Ed. 2014; 53: 1485
  • 59 Ryan SJ, Candish L, Lupton DW. J. Am. Chem. Soc. 2009; 131: 14176
  • 60 Candish L, Lupton DW. Org. Biomol. Chem. 2011; 9: 8182
  • 61 Kaeobamrung J, Mahatthananchai J, Zheng P, Bode JW. J. Am. Chem. Soc. 2010; 132: 8810
  • 62 Ryan SJ, Candish L, Lupton DW. J. Am. Chem. Soc. 2011; 133: 4694
  • 63 Ryan SJ, Stasch A, Paddon-Row MN, Lupton DW. J. Org. Chem. 2012; 77: 1113
  • 64 For a review on the discovery of this reaction, see: Ryan SJ, Candish L, Lupton DW. Synlett 2011; 2275
  • 65 Candish L, Lupton DW. J. Am. Chem. Soc. 2013; 135: 58
  • 66 Candish L, Forsyth CJ, Lupton DW. Angew. Chem. Int. Ed. 2013; 52: 9149
  • 67 For a review on the chemistry of donor–acceptor cyclopropanes, see: Reissig H.-U, Zimmer R. Chem. Rev. 2003; 103: 1151

    • For ring opening using fluoride, see:
    • 68a Kunkel E, Reichelt I, Reissig H.-U. Liebigs Ann. Chem. 1984; 802

    • For a review of Wenkert’s contributions to the chemistry of donor–acceptor cyclopropanes, see:
    • 68b Wenkert E. Acc. Chem. Res. 1980; 13: 27
  • 69 Cheng J, Huang Z, Chi YR. Angew. Chem. Int. Ed. 2013; 52: 8592

    • For other examples of this approach from the Chi group, see:
    • 70a Hao L, Du Y, Lv H, Chen X, Jiang H, Shao Y, Chi YR. Org. Lett. 2012; 14: 2154
    • 70b Hao L, Chen S, Xu J, Tiwari B, Fu Z, Li T, Lim J, Chi YR. Org. Lett. 2013; 15: 4956
    • 70c Chen S, Hao L, Zhang Y, Tiwari B, Chi YR. Org. Lett. 2013; 15: 5822
    • 70d Fu Z, Xu J, Zhu T, Leong WW. Y, Chi YR. Nature Chem. 2013; 5: 835
    • 70e Xu J, Jin Z, Chi YR. Org. Lett. 2013; 15: 5028
  • 71 For the chemistry of trimethylsilyl enol ethers with acyl fluorides under DMAP catalysis, see: Poisson T, Dalla V, Papamiceal C, Dupas G, Marsais F, Levacher V. Synlett 2007; 381
  • 72 Robinson ER. T, Fallan C, Simal C, Slawin AM. Z, Smith AD. Chem. Sci. 2013; 4: 2193
  • 73 Vellalath S, Van K N, Romo D. Angew. Chem. Int. Ed. 2013; 52: 13688
  • 74 Liu G, Shirley ME, Van K N, McFarlin RL, Romo D. Nature Chem. 2013; 5: 1049