Synthesis 2014; 46(13): 1689-1708
DOI: 10.1055/s-0033-1338635
review
© Georg Thieme Verlag Stuttgart · New York

Design and Development of Ligands for Palladium-Catalyzed Carbonylation Reactions

Weiwei Fang
Department of Chemistry, Fudan University, 220 Hand Road, Shanghai 200433, P. R. of China   Fax: +86(21)65102412   Email: taotu@fudan.edu.cn
,
Haibo Zhu
Department of Chemistry, Fudan University, 220 Hand Road, Shanghai 200433, P. R. of China   Fax: +86(21)65102412   Email: taotu@fudan.edu.cn
,
Qinyue Deng
Department of Chemistry, Fudan University, 220 Hand Road, Shanghai 200433, P. R. of China   Fax: +86(21)65102412   Email: taotu@fudan.edu.cn
,
Shuangliang Liu
Department of Chemistry, Fudan University, 220 Hand Road, Shanghai 200433, P. R. of China   Fax: +86(21)65102412   Email: taotu@fudan.edu.cn
,
Xiyu Liu
Department of Chemistry, Fudan University, 220 Hand Road, Shanghai 200433, P. R. of China   Fax: +86(21)65102412   Email: taotu@fudan.edu.cn
,
Yajing Shen
Department of Chemistry, Fudan University, 220 Hand Road, Shanghai 200433, P. R. of China   Fax: +86(21)65102412   Email: taotu@fudan.edu.cn
,
Tao Tu*
Department of Chemistry, Fudan University, 220 Hand Road, Shanghai 200433, P. R. of China   Fax: +86(21)65102412   Email: taotu@fudan.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 17 January 2014

Accepted after revision: 17 February 2014

Publication Date:
10 June 2014 (online)


Dedicated to Professor Li-Xin Dai on the occasion of his 90th birthday

Abstract

The palladium-catalyzed carbonylation reaction remains a challenging and significant research field in organic chemistry, and has emerged as a powerful and straightforward protocol for the preparation of various bioactive carbonyl compounds under quite mild reaction conditions. The achievements in this area are correlated to the design and development of versatile ligands that not only facilitate the catalytic transformation, but also provide additional control over the selectivity of the reactions. In this context, a variety of rationally designed ligands with different electronic and steric properties have been synthesized and applied in palladium-catalyzed carbonylation reactions in recent decades. This review focuses mainly on the strategy of ligand design and the results obtained with representative ligands that have different σ-donor properties in the intra- and intermolecular palladium-catalyzed carbonylation reactions of (pseudo)haloarenes with gaseous carbon monoxide and numerous types of nucleophiles. The current limitations and potential trends for further development of palladium-catalyzed carbonylation reactions are also highlighted.

1 Introduction

2 Phosphine Ligands

2.1 Monodentate Phosphines

2.1.1 Triphenylphosphine and Analogues

2.1.2 Di(1-adamantyl)-n-butylphosphine

2.1.3 Biaryl Monophosphines

2.2 Bidentate Phosphine Ligands

2.2.1 Alkyl-Bridged Diphosphines

2.2.2 Ferrocene-Based Bidentate Phosphines

2.2.3 Xantphos and Analogues

2.2.4 BINAP and Analogues

3 N-Heterocyclic Carbenes (NHCs)

4 Other Ligands

4.1 Nitrogen Ligands

4.2 Thiourea-Type Ligands

5 Summary and Outlook

 
  • References

    • 1a Wu X.-F, Neumann H, Beller M. Chem. Rev. 2013; 113: 1
    • 1b Graul A, Castañer J. Drugs Future 1997; 22: 956
    • 1c Bode JW. Curr. Opin. Drug Discov. Devel. 2006; 9: 765
    • 1d Cupido T, Tulla-Puche J, Spengler J, Albericio F. Curr. Opin. Drug Discov. Devel. 2007; 10: 768
    • 2a Bariwal J, der Eycken EV. Chem. Soc. Rev. 2013; 42: 9283
    • 2b Song G, Wang F, Li X. Chem. Soc. Rev. 2012; 41: 3651
    • 2c Li B.-J, Shi Z.-J. Chem. Soc. Rev. 2012; 41: 5588
    • 2d Cho SH, Kim JY, Kwak J, Chang S. Chem. Soc. Rev. 2011; 40: 5068
    • 3a Schoenberg A, Bartoletti I, Heck RF. J. Org. Chem. 1974; 39: 3318
    • 3b Schoenberg A, Heck RF. J. Org. Chem. 1974; 39: 3327
    • 3c Schoenberg A, Heck RF. J. Am. Chem. Soc. 1974; 96: 7761
  • 4 Wu X.-F, Neumann H, Beller M. Chem. Soc. Rev. 2011; 40: 4986
  • 5 Grigg R, Mutton SP. Tetrahedron 2010; 66: 5515
  • 6 Winter MJ. d-Block Chemistry. Oxford University Press; Oxford: 1999. 4th ed. 61-63
  • 7 Fairlamb IJ. S, Grant S, McCormack P, Whittall J. Dalton Trans. 2007; 859
  • 8 Liu Q, Zhang H, Lei A. Angew. Chem. Int. Ed. 2011; 50: 10788
  • 9 Freixa Z, van Leeuwen PW. N. M. Dalton Trans. 2003; 1890
    • 10a Hu Y, Zhang Y, Yang Z, Fathi R. J. Org. Chem. 2002; 67: 2365
    • 10b Chouhan G, Alper H. Org. Lett. 2008; 10: 4987
    • 10c Gabriele B, Mancuso R, Salerno G, Veltri L. Chem. Commun. 2005; 271
    • 10d Cao H, Alper H. Org. Lett. 2010; 12: 4126
    • 11a Lindsell WE, Palmer DD, Preston PN, Rosair GM. Organometallics 2005; 24: 1119
    • 11b Aggarwal VK, Davies PW, Schmidt AT. Chem. Commun. 2004; 1232
    • 11c Fusano A, Sumino S, Nishitani S, Inouye T, Morimoto K, Fukuyama T, Ryu I. Chem. Eur. J. 2012; 18: 9415
    • 11d Ryu I, Kreimerman S, Araki F, Nishitani S, Oderaotoshi Y, Minakata S, Komatsu M. J. Am. Chem. Soc. 2002; 124: 3812
  • 12 Fukuyama T, Nishitani S, Inouye T, Morimoto K, Ryu I. Org. Lett. 2006; 8: 1383
  • 13 Lee HK, Cho CS. Appl. Organomet. Chem. 2012; 26: 406
  • 14 Cho CS, Kim HB. Catal. Lett. 2010; 140: 116
    • 15a Bloome KS, Alexanian EJ. J. Am. Chem. Soc. 2010; 132: 12823
    • 15b Ferguson J, Zeng F, Alper H. Org. Lett. 2012; 14: 5602
    • 15c Yum EK, Park WS, Kim SH, Kang SK, Kim SS, Ahn JH. Chem. Lett. 2008; 37: 1068
  • 16 Harada Y, Fukumoto Y, Chatani N. Org. Lett. 2005; 7: 4385
    • 17a Akpınar GE, Kuş M, Uçüncü M, Karakuş E, Artok L. Org. Lett. 2011; 13: 748
    • 17b Tsukada N, Sugawara S, Okuzawa T, Inoue Y. Synthesis 2006; 3003
  • 18 Yao T, Yue D, Larock RC. J. Org. Chem. 2005; 70: 9985
    • 19a Uozumi Y, Arii T, Watanabe T. J. Org. Chem. 2001; 66: 5272
    • 19b Takács E, Varga C, Skoda-Földes R, Kollár L. Tetrahedron Lett. 2007; 48: 2453
    • 19c Abbiati G, Arcadi A, Canevari V, Capezzuto L, Rossi E. J. Org. Chem. 2005; 70: 6454
    • 19d Prediger P, Brandão R, Nogueira CW, Zeni G. Eur. J. Org. Chem. 2007; 5422
    • 19e Zeng F, Alper H. Org. Lett. 2010; 12: 1188
  • 20 Trost BM, Ameriks MK. Org. Lett. 2004; 6: 1745
  • 21 Rescourio G, Alper H. J. Org. Chem. 2008; 73: 1612
    • 22a Alper H, Perera CP. J. Am. Chem. Soc. 1981; 103: 1289
    • 22b Alper H, Hamel N. Tetrahedron Lett. 1987; 28: 3237
    • 22c Spears GW, Nakanishi K, Ohfune Y. Synlett 1991; 91
    • 22d Tanner D, Somfai P. Bioorg. Med. Chem. Lett. 1993; 3: 2415
  • 23 Fontana F, Tron GC, Barbero N, Ferrini S, Thomas SP, Aggarwal VK. Chem. Commun. 2010; 46: 267
    • 24a Scrivanti A, Beghetto V, Matteoli U. Adv. Synth. Catal. 2002; 344: 543
    • 24b Cao H, Xiao W.-J, Alper H. J. Org. Chem. 2007; 72: 8562
    • 25a Ardizzoia GA, Beccalli EM, Borsini E, Brenna S, Broggini G, Rigamonti M. Eur. J. Org. Chem. 2008; 5590
    • 25b Alper H, Antebi S, Woell JB. Angew. Chem. Int. Ed. 1984; 23: 732
    • 25c Yamamoto Y. Adv. Synth. Catal. 2010; 352: 478
    • 25d Vieira TO, Meaney LA, Shi Y.-L, Alper H. Org. Lett. 2008; 10: 4899
    • 25e Ye S, Wu J. Org. Lett. 2011; 13: 5980
  • 26 Vieira TO, Green MJ, Alper H. Org. Lett. 2006; 8: 6143
    • 27a Drent E, Budzelaar PH. M. Chem. Rev. 1996; 96: 663
    • 27b Kacker S, Sen A. J. Am. Chem. Soc. 1997; 119: 10028
    • 27c Ferreira AC, Crous R, Bennie L, Meij AM. M, Blann K, Bezuidenhoudt BC. B, Young DA, Green MJ, Roodt A. Angew. Chem. Int. Ed. 2007; 46: 2273
    • 28a Xiao W.-J, Vasapollo G, Alper H. J. Org. Chem. 2000; 65: 4138
    • 28b Cao H, McNamee L, Alper H. J. Org. Chem. 2008; 73: 3530
    • 29a Xiao W.-J, Alper H. J. Org. Chem. 2005; 70: 1802
    • 29b Li C.-F, Xiao W.-J, Alper H. J. Org. Chem. 2009; 74: 888
  • 30 Cao H, McNamee L, Alper H. Org. Lett. 2008; 10: 5281
    • 31a Zheng Z, Alper H. Org. Lett. 2008; 10: 4903
    • 31b Zheng Z, Alper H. Org. Lett. 2008; 10: 829
  • 32 Prediger P, Moro AV, Nogueira CW, Savegnago L, Menezes PH, Rocha JB. T, Zeni G. J. Org. Chem. 2006; 71: 3786
  • 33 Sumino S, Ui T, Ryu I. Org. Lett. 2013; 15: 3142
  • 34 Kim W, Park K, Park A, Choe J, Lee S. Org. Lett. 2013; 15: 1654
  • 35 Park A, Park K, Kim Y, Lee S. Org. Lett. 2011; 13: 944
  • 36 Wu X.-F, Neumann H, Beller M. Org. Biomol. Chem. 2011; 9: 8003
  • 37 Fusano A, Fukuyama T, Nishitani S, Inouye T, Ryu I. Org. Lett. 2010; 12: 2410
    • 38a Wu X.-F, Neumann H, Beller M. Tetrahedron Lett. 2010; 51: 6146
    • 38b Korsager S, Taaning RH, Lindhardt AT, Skrydstrup T. J. Org. Chem. 2013; 78: 6112
    • 38c Gøgsig TM, Nielsen DU, Lindhardt AT, Skrydstrup T. Org. Lett. 2012; 14: 2536
    • 38d Nielsen DU, Neumann K, Taaning RH, Lindhardt AT, Modvig A, Skrydstrup T. J. Org. Chem. 2012; 77: 6155
  • 39 Ehrentraut A, Zapf A, Beller M. Synlett 2000; 1589
    • 40a Zapf A, Ehrentraut A, Beller M. Angew. Chem. Int. Ed. 2000; 39: 4153
    • 40b Köllhofer A, Pullmann T, Plenio H. Angew. Chem. Int. Ed. 2003; 42: 1056
  • 41 Klaus S, Neumann H, Zapf A, Strübing D, Hübner S, Almena J, Riermeier T, Groß P, Sarich M, Krahnert W.-R, Rossen K, Beller M. Angew. Chem. Int. Ed 2006; 45: 154
    • 42a Neumann H, Brennführer A, Groß P, Riermeier T, Almena J, Beller M. Adv. Synth. Catal. 2006; 348: 1255
    • 42b Wu X.-F, Neumann H, Beller M. ChemCatChem 2010; 2: 509
  • 43 Neumann H, Brennführer A, Beller M. Chem. Eur. J. 2008; 14: 3645
  • 44 Wu X.-F, Neumann H, Beller M. Chem. Eur. J. 2010; 16: 12104
  • 45 Wu X.-F, Neumann H, Beller M. Chem. Eur. J. 2010; 16: 9750
  • 46 Hermange P, Gøgsig TM, Lindhardt AT, Taaning RH, Skrydstrup T. Org. Lett. 2011; 13: 2444
  • 47 Schranck J, Tlili A, Neumann H, Alsabeh PG, Stradiotto M, Beller M. Chem. Eur. J. 2012; 18: 15592
  • 48 Neumann H, Brennführer A, Beller M. Adv. Synth. Catal. 2008; 350: 2437
  • 49 Wu X.-F, Schranck J, Neumann H, Beller M. Chem. Eur. J. 2011; 17: 12246
  • 50 Wu X.-F, Neumann H, Neumann S, Beller M. Chem. Eur. J. 2012; 18: 13619
  • 51 Bjerglund K, Lindhardt AT, Skrydstrup T. J. Org. Chem. 2012; 77: 3793
  • 52 Wu X.-F, Sharif M, Shoaib K, Neumann H, Pews-Davtyan A, Langer P, Beller M. Chem. Eur. J. 2013; 19: 6230
  • 53 Schranck J, Tlili A, Alsabeh PG, Neumann H, Stradiotto M, Beller M. Chem. Eur. J. 2013; 19: 12624
  • 54 Wu X.-F, He L, Neumann H, Beller M. Chem. Eur. J. 2013; 19: 12635
  • 55 Sharif M, Pews-Davtyan A, Lukas J, Schranck J, Langer P, Rolfs A, Beller M. Eur. J. Org. Chem. 2014; 222
  • 56 Liu Q, Wu L, Jiao H, Fang X, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2013; 52: 8064
  • 57 Old DW, Wolfe JP, Buchwald SL. J. Am. Chem. Soc. 1998; 120: 9722
  • 58 Martin R, Buchwald SL. Acc. Chem. Res. 2008; 41: 1461
  • 59 Zheng Z, Alper H. Org. Lett. 2009; 11: 3278
  • 60 Zeng F, Alper H. Org. Lett. 2010; 12: 5567
    • 61a Schulz T, Torborg C, Schäffner B, Huang J, Zapf A, Kadyrov R, Börner A, Beller M. Angew. Chem. Int. Ed. 2009; 48: 918
    • 61b Zapf A, Jackstell R, Rataboul F, Riermeier T, Monsees A, Fuhrmann C, Shaikh N, Dingerdissen U, Beller M. Chem. Commun. 2004; 38
  • 62 Sergeev AG, Schulz T, Torborg C, Spannenberg A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2009; 48: 7595
    • 63a Imm S, Bähn S, Neubert L, Neumann H, Beller M. Angew. Chem. Int. Ed. 2010; 49: 8126
    • 63b Schulz T, Torborg C, Enthaler S, Schäffner B, Dumrath A, Spannenberg A, Neumann H, Börner A, Beller M. Chem. Eur. J. 2009; 15: 4528
  • 64 Wu X.-F, Neumann H, Spannenberg A, Schulz T, Jiao H, Beller M. J. Am. Chem. Soc. 2010; 132: 14596
  • 65 Wu X.-F, Neumann H, Beller M. Eur. J. Org. Chem. 2011; 4919
  • 66 Schranck J, Wu X.-F, Neumann H, Beller M. Chem. Eur. J. 2012; 18: 4827
  • 67 Schranck J, Wu X.-F, Tlili A, Neumann H, Beller M. Chem. Eur. J. 2013; 19: 12959
  • 68 Lundgren RJ, Hesp KD, Stradiotto M. Synlett 2011; 2443
  • 69 Alsabeh PG, Stradiotto M, Neumann H, Beller M. Adv. Synth. Catal. 2012; 354: 3065
    • 70a Awuah E, Capretta A. Org. Lett. 2009; 11: 3210
    • 70b Xu T, Alper H. Tetrahedron Lett. 2013; 54: 5496
    • 71a Kuniyasu H, Yoshizawa T, Kambe N. Tetrahedron Lett. 2010; 51: 6818
    • 71b Ali BE, Tijani J, El-Ghanam A, Fettouhi M. Tetrahedron Lett. 2001; 42: 1567
    • 71c Xiao W.-J, Alper H. J. Org. Chem. 2001; 66: 6229
    • 71d Mollar C, de Arellano CR, Medio-Simón M, Asensio G. J. Org. Chem. 2012; 77: 9693
    • 71e Korsager S, Nielsen DU, Taaning RH, Skrydstrup T. Angew. Chem. Int. Ed. 2013; 52: 9763
    • 72a Birkholz M.-N, Freixa Z, van Leeuwen PW. N. M. Chem. Soc. Rev. 2009; 38: 1099
    • 72b van Leeuwen PW. N. M, Kamer PC. J, Reek JN. H, Dierkes P. Chem. Rev. 2000; 100: 2741
  • 73 Casey CP, Whiteker GT. Isr. J. Chem. 1990; 30: 299
    • 74a Tijani J, Suleiman R, Ali BE. Appl. Organomet. Chem. 2008; 22: 553
    • 74b Suleiman R, Tijani J, Ali BE. Appl. Organomet. Chem. 2010; 24: 38
    • 75a Martinelli JR, Clark TP, Watson DA, Munday RH, Buchwald SL. Angew. Chem. Int. Ed. 2007; 46: 8460
    • 75b Watson DA, Fan X, Buchwald SL. J. Org. Chem. 2008; 73: 7096
  • 76 Munday RH, Martinelli JR, Buchwald SL. J. Am. Chem. Soc. 2008; 130: 2754
  • 77 Ye F, Alper H. Adv. Synth. Catal. 2006; 348: 1855
  • 78 Ye F, Alper H. J. Org. Chem. 2007; 72: 3218
  • 79 Cao H, Vieira TO, Alper H. Org. Lett. 2011; 13: 11
  • 80 Wu X.-F, Schranck J, Neumann H, Beller M. Chem. Asian J. 2012; 7: 40
  • 81 Li Y, Alper H, Yu Z. Org. Lett. 2006; 8: 5199
  • 82 Li Y, Yu Z, Alper H. Org. Lett. 2007; 9: 1647
  • 83 Worlikar SA, Larock RC. J. Org. Chem. 2008; 73: 7175
  • 84 Wu X.-F, Neumann H, Beller M. Angew. Chem. Int. Ed. 2010; 49: 5284
  • 85 Wu X.-F, Anbarasan P, Neumann H, Beller M. Angew. Chem. Int. Ed. 2010; 49: 7316
  • 86 Li Y, Xue D, Wang C, Liu Z.-T, Xiao J. Chem. Commun. 2012; 48: 1320
  • 87 Nielsen DU, Lescot C, Gøgsig TM, Lindhardt AT, Skrydstrup T. Chem. Eur. J. 2013; 19: 17926
    • 88a Kealy TJ, Pauson PL. Nature 1951; 168: 1039
    • 88b Miller SA, Tebboth JA, Tremaine JF. J. Chem. Soc. 1952; 632
    • 89a Dai L.-X, Tu T, You S.-L, Deng W.-P, Hou X.-L. Acc. Chem. Res. 2003; 36: 659
    • 89b Hierso J.-C, Smaliy R, Amardeil R, Meunier P. Chem. Soc. Rev. 2007; 36: 1754
  • 90 Mägerlein W, Indolese AF, Beller M. Angew. Chem. Int. Ed. 2001; 40: 2856
  • 91 Kumar K, Zapf A, Michalik D, Tillack A, Heinrich T, Böttcher H, Arlt M, Beller M. Org. Lett. 2004; 6: 7
  • 92 Haddad N, Tan J, Farina V. J. Org. Chem. 2006; 71: 5031
  • 93 Cai C, Rivera NR, Balsells J, Sidler RR, McWilliams JC, Shultz CS, Sun Y. Org. Lett. 2006; 8: 5161
  • 94 Roberts B, Liptrot D, Alcaraz L. Org. Lett. 2010; 12: 1264
  • 95 Wu X.-F, Neumann H, Beller M. Chem. Asian J. 2010; 5: 2168
  • 96 Wu X.-F, Neumann H, Neumann S, Beller M. Chem. Eur. J. 2012; 18: 8596
  • 97 Xing Q, Shi L, Lang R, Xia C, Li F. Chem. Commun. 2012; 48: 11023
    • 98a Butler IR, Cullen WR, Kim T.-J. Synth. React. Inorg. Met. Org. Chem. 1985; 15: 109
    • 98b Gøgsig TM, Taaning RH, Lindhardt AT, Skrydstrup T. Angew. Chem. Int. Ed. 2012; 51: 798
    • 98c Korsager S, Taaning RH, Skrydstrup T. J. Am. Chem. Soc. 2013; 135: 2891
    • 99a Dube G, Selent D, Taube R. Z. Chem. 1985; 25: 154
    • 99b Arthuis M, Lecup A, Roulland E. Chem. Commun. 2010; 46: 7810
    • 99c Burhardt MN, Taaning RH, Skrydstrup T. Org. Lett. 2013; 15: 948
  • 100 Hillebrand S, Bruckmann J, Krüger C, Haenel MW. Tetrahedron Lett. 1995; 36: 75
  • 101 Kamer PC. J, van Leeuwen PW. N. M, Reek JN. H. Acc. Chem. Res. 2001; 34: 895
  • 102 Lou R, VanAlstine M, Sun X, Wentland MP. Tetrahedron Lett. 2003; 44: 2477
  • 103 Martinelli JR, Freckmann DM. M, Buchwald SL. Org. Lett. 2006; 8: 4843
  • 104 Martinelli JR, Watson DA, Freckmann DM. M, Barder TE, Buchwald SL. J. Org. Chem. 2008; 73: 7102
  • 105 Deagostino A, Larini P, Occhiato EG, Pizzuto L, Prandi C, Venturello P. J. Org. Chem. 2008; 73: 1941
  • 106 Wu X.-F, Sundararaju B, Neumann H, Dixneuf PH, Beller M. Chem. Eur. J. 2011; 17: 106
  • 107 Korsager S, Nielsen DU, Taaning RH, Lindhardt AT, Skrydstrup T. Chem. Eur. J. 2013; 19: 17687
  • 108 Xie P, Xie Y, Qian B, Zhou H, Xia C, Huang H. J. Am. Chem. Soc. 2012; 134: 9902
  • 109 Zeng F, Alper H. Org. Lett. 2013; 15: 2034
  • 110 Miyashita A, Yasuda A, Takaya H, Toriumi K, Ito T, Souchi T, Noyori R. J. Am. Chem. Soc. 1980; 102: 7932
  • 111 Albaneze-Walker J, Bazaral C, Leavey T, Dormer PG, Murry JA. Org. Lett. 2004; 6: 2097
  • 112 Pai C.-C, Li Y.-M, Zhou Z.-Y, Chan AS. C. Tetrahedron Lett. 2002; 43: 2789
  • 113 de Paule SD, Jeulin S, Ratovelomanana-Vidal V, Genêt J.-P, Champion N, Dellis P. Tetrahedron Lett. 2003; 44: 823
  • 114 Zhao Y, Jin L, Li P, Lei A. J. Am. Chem. Soc. 2008; 130: 9429
    • 115a Viciu MS, Kissling RM, Stevens ED, Nolan SP. Org. Lett. 2002; 4: 2229
    • 115b Fortman GC, Nolan SP. Chem. Soc. Rev. 2011; 40: 5151
    • 116a Chianese AR, Li X, Janzen MC, Faller JW, Crabtree RH. Organometallics 2003; 22: 1663
    • 116b Dorta R, Stevens ED, Scott NM, Costabile C, Cavallo L, Hoff CD, Nolan SP. J. Am. Chem. Soc. 2005; 127: 2485
    • 117a Nelson DJ, Nolan SP. Chem. Soc. Rev. 2013; 42: 6723
    • 117b Kantchev EA. B, O’Brien CJ, Organ MG. Angew. Chem. Int. Ed. 2007; 46: 2768
    • 118a Arduengo AJ. III, Harlow RL, Kline M. J. Am. Chem. Soc. 1991; 113: 361
    • 118b Herrmann WA, Elison M, Fischer J, Köcher C, Artus GR. J. Angew. Chem. Int. Ed. 1995; 34: 2371
  • 119 Rahman T, Fukuyama T, Kamata N, Sato M, Ryu I. Chem. Commun. 2006; 2236
  • 120 Ho S, Bondarenko G, Rosa D, Dragisic B, Orellana A. J. Org. Chem. 2012; 77: 2008
  • 121 Valente C, Çalimsiz S, Hoi KH, Mallik D, Sayah M, Organ MG. Angew. Chem. Int. Ed. 2012; 51: 3314
  • 122 O’Keefe BM, Simmons N, Martin SF. Org. Lett. 2008; 10: 5301
  • 123 O’Keefe BM, Simmons N, Martin SF. Tetrahedron 2011; 67: 4344
    • 124a Tu T, Fang W, Jiang J. Chem. Commun. 2011; 47: 12358
    • 124b Tu T, Sun Z, Fang W, Xu M, Zhou Y. Org. Lett. 2012; 14: 4250
  • 125 Xue L, Shi L, Han Y, Xia C, Huynh HV, Li F. Dalton Trans. 2011; 40: 7632
    • 126a Tu T, Fang W, Bao X, Li X, Dötz KH. Angew. Chem. Int. Ed. 2011; 50: 6601
    • 126b Tu T, Bao X, Assenmacher W, Peterlik H, Daniels J, Dötz KH. Chem. Eur. J. 2009; 15: 1853
    • 126c Tu T, Assenmacher W, Peterlik H, Schnakenburg G, Dötz KH. Angew. Chem. Int. Ed. 2008; 47: 7127
    • 126d Tu T, Assenmacher W, Peterlik H, Weisbarth R, Nieger M, Dötz KH. Angew. Chem. Int. Ed. 2007; 46: 6368
    • 126e Wang Z, Feng X, Fang W, Tu T. Synlett 2011; 951
    • 126f Tu T, Feng X, Wang Z, Liu X. Dalton Trans. 2010; 39: 10598
    • 126g Tu T, Mao H, Herbert C, Xu M, Dötz KH. Chem. Commun. 2010; 46: 7796
    • 126h Tu T, Malineni J, Bao X, Dötz KH. Adv. Synth. Catal. 2009; 351: 1029
    • 126i Tu T, Malineni J, Dötz KH. Adv. Synth. Catal. 2008; 350: 1791
  • 127 Fang W, Deng Q, Xu M, Tu T. Org. Lett. 2013; 15: 3678
    • 128a Gasperini M, Ragaini F, Remondini C, Caselli A, Cenini S. J. Organomet. Chem. 2005; 690: 4517
    • 128b Li F, Xia C. Tetrahedron Lett. 2007; 48: 4845
    • 128c Yang Q, Robertson A, Alper H. Org. Lett. 2008; 10: 5079
    • 129a Evans DA, Woerpel KA, Hinman MM, Faul MM. J. Am. Chem. Soc. 1991; 113: 726
    • 129b Corey EJ, Imai N, Zhang H.-Y. J. Am. Chem. Soc. 1991; 113: 728
  • 130 Desimoni G, Faita G, Jørgensen KA. Chem. Rev. 2006; 106: 3561
  • 131 Motodate S, Kobayashi T, Fujii M, Mochida T, Kusakabe T, Katoh S, Akita H, Kato K. Chem. Asian J. 2010; 5: 2221
  • 132 Arai MA, Arai T, Sasai H. Org. Lett. 1999; 1: 1795
  • 133 Tsujihara T, Shinohara T, Takenaka K, Takizawa S, Onitsuka K, Hatanaka M, Sasai H. J. Org. Chem. 2009; 74: 9274
    • 134a Dai M, Liang B, Wang C, You Z, Xiang J, Dong G, Chen J, Yang Z. Adv. Synth. Catal. 2004; 346: 1669
    • 134b Liang B, Liu J, Gao Y.-X, Wongkhan K, Shu D.-X, Lan Y, Li A, Batsanov AS, Howard JA. H, Marder TB, Chen J.-H, Yang Z. Organometallics 2007; 26: 4756
    • 134c Liu J, Liang B, Shu D, Hu Y, Yang Z, Lei A. Tetrahedron 2008; 64: 9581
  • 135 He L, Li H, Neumann H, Beller M, Wu X.-F. Angew. Chem. Int. Ed. 2014; 53: 1420