Synthesis 2014; 46(03): 269-280
DOI: 10.1055/s-0033-1338569
review
© Georg Thieme Verlag Stuttgart · New York

Developments in Nitrosocarbonyl Chemistry: Mild Oxidation of N-Substituted Hydroxylamines Leads to New Discoveries

Leoni I. Palmer
Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, CA 93106-9510, USA   Fax: +1(805)8934120   Email: javier@chem.ucsb.edu
,
Charles P. Frazier
Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, CA 93106-9510, USA   Fax: +1(805)8934120   Email: javier@chem.ucsb.edu
,
Javier Read de Alaniz*
Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, CA 93106-9510, USA   Fax: +1(805)8934120   Email: javier@chem.ucsb.edu
› Author Affiliations
Further Information

Publication History

Received: 30 August 2013

Accepted after revision: 14 October 2013

Publication Date:
12 December 2013 (online)


Abstract

This account describes the discovery and development of mild and efficient protocols for the generation of highly reactive nitroso compounds to allow their subsequent use in previously inaccessible or challenging chemistries.

1 Introduction

2 Formation of Nitrosocarbonyl Compounds

3 The Nitrosocarbonyl Ene Reaction

3.1 Single-Pot Nitrosocarbonyl Ene Reactions

3.2 Copper-Catalyzed Aerobic Oxidation for the Nitroso­carbonyl Ene Reaction

4 The Hetero-Diels–Alder Reaction as a Platform for Studying Aerobic Oxidation

5 Dual Catalysis and α-Functionalization Reactions

5.1 α-Amination Reaction of β-Keto Esters

5.2 α-Oxygenation Reaction of β-Keto Esters

6 The Future of Nitroso Chemistry

 
  • References


    • For select reviews, see:
    • 1a Davis FA, Chen BC. Chem. Rev. 1992; 92: 919
    • 1b Greck C, Genêt JP. Synlett 1997; 741
    • 1c Dembech P, Seconi G, Ricci A. Chem. Eur. J. 2000; 6: 1281
    • 1d Erdik E. Tetrahedron 2004; 60: 8747
    • 1e Smith AM. R, Hii KK. Chem. Rev. 2011; 111: 1637
    • 1f Gephart RT, Warren TH. Organometallics 2012; 31: 7728
    • 1g Roizen JL, Harvey ME, Du Bois J. Acc. Chem. Res. 2012; 45: 911
    • 1h Jeffrey JL, Sarpong R. Chem. Sci. 2013; 4: 4092

      For select examples, see:
    • 2a Yamamoto H, Momiyama N. Chem. Commun. 2005; 3514
    • 2b Yamamoto H, Kawasaki M. Bull. Chem. Soc. Jpn. 2007; 80: 595

      For select reviews, see:
    • 3a Iwasa S, Fakhruddin A, Nishiyama H. Mini-Rev. Org. Chem. 2005; 2: 157
    • 3b Bodnar BS, Miller MJ. Angew. Chem. Int. Ed. 2011; 50: 5630

      For select examples, see:
    • 5a Demond JF, King SB. Antioxid. Redox Signal. 2011; 14: 1637
    • 5b Nakagawa H. Nitric Oxide 2011; 25: 195
    • 5c Sutton AD, Williamson M, Weismiller H, Toscano JP. Org. Lett. 2011; 14: 472
    • 6a Baidya M, Griffin KA, Yamamoto H. J. Am. Chem. Soc. 2012; 134: 18566
    • 6b Sandoval D, Frazier CP, Bugarin A, Read de Alaniz J. J. Am. Chem. Soc. 2012; 134: 18948
    • 6c Frazier CP, Sandoval D, Palmer LI, Read de Alaniz J. Chem. Sci. 2013; 4: 3857
  • 7 Cohen AD, Zeng B.-B, King SB, Toscano JP. J. Am. Chem. Soc. 2003; 125: 1444
  • 8 For a review, see: Gowenlock BG, Richter-Addo GB. Chem. Rev. 2004; 104: 3315
  • 9 Kirby GW, Sweeny JG. J. Chem. Soc., Chem. Commun. 1973; 704
  • 10 Dao LH, Dust JM, Mackay D, Watson KN. Can. J. Chem. 1979; 57: 1712
  • 11 Jenkins NE, Ware RW, Atkinson RN, King SB. Synth. Commun. 2000; 30: 947
  • 12 Martin SF, Hartmann M, Josey JA. Tetrahedron Lett. 1992; 33: 3583

    • For select examples, see:
    • 13a Flower KR, Lightfoot AP, Wan H, Whiting A. Chem. Commun. 2001; 1812
    • 13b Iwasa S, Tajima K, Tsushima S, Nishiyama H. Tetrahedron Lett. 2001; 42: 5897
    • 13c Adamo MF. A, Bruschi S. J. Org. Chem. 2007; 72: 2666
  • 14 Teo YC, Pan Y, Tan CH. ChemCatChem 2013; 5: 235
  • 15 Quadrelli P, Mella M, Caramella P. Tetrahedron Lett. 1999; 40: 797
    • 16a Quadrelli P, Invernizzi AG, Caramella P. Tetrahedron Lett. 1996; 37: 1909
    • 16b Quadrelli P, Mella M, Caramella P. Tetrahedron Lett. 1998; 39: 3233
    • 17a O’Bannon PE, William DP. Tetrahedron Lett. 1988; 29: 5719
    • 17b O’Bannon PE, Dailey WP. J. Org. Chem. 1989; 54: 3096
    • 17c Yashin NV, Averina EB, Grishin YK, Kuznetsova TS, Zefirov NS. Synthesis 2006; 279
    • 17d Chemagin AV, Yashin NV, Grishin YK, Kuznetsova TS, Zefirov NS. Synthesis 2010; 259
    • 17e So SS, Mattson AE. J. Am. Chem. Soc. 2012; 134: 8798
    • 18a Keck GE, Webb RR, Yates JB. Tetrahedron 1981; 37: 4007
    • 18b Kirby GW, McGuigan H, McLean D. J. Chem. Soc., Perkin Trans. 1 1985; 1961

      For select examples, see:
    • 20a Keck GE, Webb RR. J. Am. Chem. Soc. 1981; 103: 3173
    • 20b Keck GE, Webb RR. J. Org. Chem. 1982; 47: 1302
    • 20c Matsumura Y, Aoyagi S, Kibayashi C. Org. Lett. 2003; 5: 3249
  • 21 Johannsen M, Jorgensen KA. Chem. Rev. 1998; 98: 1689
  • 22 Adam W, Bottke N, Krebs O, Saha-Möller CR. Eur. J. Org. Chem. 1999; 1963
    • 23a Kalita B, Nicholas KM. Tetrahedron Lett. 2005; 46: 1451
    • 23b Atkinson D, Kabeshov MA, Edgar M, Malkov AV. Adv. Synth. Catal. 2011; 353: 3347
  • 24 Fakhruddin A, Iwasa S, Nishiyama H, Tsutsumi K. Tetrahedron Lett. 2004; 45: 9323
  • 25 Frazier CP, Engelking JR, Read de Alaniz J. J. Am. Chem. Soc. 2011; 133: 10430
  • 26 Adam W, Bottke N, Krebs O. J. Am. Chem. Soc. 2000; 122: 6791
  • 27 Adam W, Degen H.-G, Krebs O, Saha-Möller CR. J. Am. Chem. Soc. 2002; 124: 12938
  • 28 In our original report (reference 25), we noticed an error in the configuration of the chemical structure in the square brackets of Scheme 6. The corrected version is reported in Scheme 6. In addition an official correction to the original manuscript was submitted; we apologize for this error and for any inconvenience caused
    • 29a Kreße G, Vasella A, Felber H, Ritter A, Ascherl B. Recl. Trav. Chim. Pays-Bas 1986; 105: 295
    • 29b Braun H, Felber H, Kreße G, Ritter A, Schmidtchen FP, Schneider A. Tetrahedron 1991; 47: 3313
    • 29c Yang B, Miller MJ. Tetrahedron Lett. 2010; 51: 328
  • 30 Chaiyaveij D, Cleary L, Batsanov AS, Marder TB, Shea KJ, Whiting A. Org. Lett. 2011; 13: 3442
  • 31 Frazier CP, Bugarin A, Engelking JR, Read de Alaniz J. Org. Lett. 2012; 14: 3620
    • 32a Gouverneur V, Dive G, Ghosez L. Tetrahedron: Asymmetry 1991; 2: 1173
    • 32b Chapuis C, Laumer J.-YD. S, Marty M. Helv. Chim. Acta 1997; 80: 146
    • 32c Vogt PF, Miller MJ. Tetrahedron 1998; 54: 1317
  • 33 Walker TK. J. Chem. Soc. Trans. 1924; 125: 1622
    • 34a Momiyama N, Yamamoto H. Angew. Chem. Int. Ed. 2002; 41: 2986
    • 34b Brown SP, Brochu MP, Sinz CJ, MacMillan DW. C. J. Am. Chem. Soc. 2003; 125: 10808
    • 34c Hayashi Y, Yamaguchi J, Hibino K, Shoji M. Tetrahedron Lett. 2003; 44: 8293
    • 34d Momiyama N, Yamamoto H. J. Am. Chem. Soc. 2003; 125: 6038
    • 34e Zhong G. Angew. Chem. Int. Ed. 2003; 42: 4247
    • 34f Momiyama N, Yamamoto H. J. Am. Chem. Soc. 2004; 126: 5360
    • 34g Momiyama N, Yamamoto H. J. Am. Chem. Soc. 2005; 127: 1080
    • 34h Kano T, Ueda M, Takai J, Maruoka K. J. Am. Chem. Soc. 2006; 128: 6046
    • 34i Palomo C, Vera S, Velilla I, Mielgo A, Gómez-Bengoa E. Angew. Chem. Int. Ed. 2007; 46: 8054
    • 34j Lu M, Zhu D, Lu Y, Zeng X, Tan B, Xu Z, Zhong G. J. Am. Chem. Soc. 2009; 131: 4562
    • 34k Yanagisawa A, Takeshita S, Izumi Y, Yoshida K. J. Am. Chem. Soc. 2010; 132: 5328
    • 34l Shen K, Liu X, Wang G, Lin L, Feng X. Angew. Chem. Int. Ed. 2011; 50: 4684
  • 35 It was not possible to isolate 112 directly due to its tendency to undergo self-condensation, resulting in low mass recovery from substantial decomposition.
    • 36a Kumarn S, Shaw DM, Longbottom DA, Ley SV. Org. Lett. 2005; 7: 4189
    • 36b Kumarn S, Shaw DM, Ley SV. Chem. Commun. 2006; 3211
    • 37a Unthank MG, Hussain N, Aggarwal VK. Angew. Chem. Int. Ed. 2006; 45: 7066
    • 37b Kokotos CG, McGarrigle EM, Aggarwal VK. Synlett 2008; 2191
    • 37c Yar M, McGarrigle EM, Aggarwal VK. Angew. Chem. Int. Ed. 2008; 47: 3784