Synthesis 2013; 45(19): 2627-2648
DOI: 10.1055/s-0033-1338522
review
© Georg Thieme Verlag Stuttgart · New York

Asymmetric Organocatalysis and the Nitro Group Functionality

Lewis S. Aitken
School of Chemistry, Food and Pharmacy (SCFP), University of Reading, Whiteknights, Reading, Berkshire RG6 6AD, UK   Fax: +44(118)3784644   Email: [email protected]
,
Natasha R. Arezki
School of Chemistry, Food and Pharmacy (SCFP), University of Reading, Whiteknights, Reading, Berkshire RG6 6AD, UK   Fax: +44(118)3784644   Email: [email protected]
,
Antonio Dell’Isola
School of Chemistry, Food and Pharmacy (SCFP), University of Reading, Whiteknights, Reading, Berkshire RG6 6AD, UK   Fax: +44(118)3784644   Email: [email protected]
,
Alexander J. A. Cobb*
School of Chemistry, Food and Pharmacy (SCFP), University of Reading, Whiteknights, Reading, Berkshire RG6 6AD, UK   Fax: +44(118)3784644   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 04 June 2013

Accepted after revision: 02 July 2013

Publication Date:
09 September 2013 (online)


Abstract

The nitro group is an exceptionally versatile functional group, not only because it is essentially a masked amine, but also because its chemistry can be exploited in a number of useful ways. Asymmetric organocatalysis in particular has capitalized on the use of the nitro group towards the synthesis of a variety of nitrogen-containing­ targets. Perhaps of greatest interest is that this functional group has been shown to be invaluable within the rapidly expanding field of organocatalytic domino reactions. This review features selected examples of nitro group reactivity in organocatalysis to demonstrate its dynamism and utility.

1 Introduction

2 Nitroalkanes in Organocatalysis

2.1 Secondary Amine Catalyzed Nitronate Reactions

2.2 Brønsted Acid Catalyzed Nitronate Reactions

2.3 Phase-Transfer-Catalyzed Nitronate Reactions

3 Conjugated Nitro Compounds in Organocatalysis

3.1 Secondary Amine Catalyzed Reactions with Conjugated Nitro­ Compounds

3.2 Brønsted Acid Catalyzed Conjugate Additions to Nitroolefins

3.3 Phase-Transfer-Catalyzed Conjugate Additions to Nitroolefins

4 Domino Processes in Organocatalysis Using Nitroolefins

4.1 Secondary Amine Catalyzed Domino Processes

4.2 Brønsted Acid Catalyzed Domino Processes

5 Conclusions

 
  • References

  • 1 Ono N In The Nitro Group in Organic Synthesis . Feuer H. Wiley-VCH; New York: 2001
    • 2a Notz W, Tanaka F, Barbas III CF. Acc. Chem. Res. 2004; 37: 580
    • 2b Mukherjee S, Yang JW, Hoffmann S, List B. Chem. Rev. 2007; 107: 5471
    • 2c Guillena G, Nájera C, Ramón DJ. Tetrahedron: Asymmetry 2007; 18: 2249
    • 2d Kano T, Maruoka K. Chem. Sci. 2013; 4: 907
    • 3a Gotoh H, Ishikawa H, Hayashi Y. Org. Lett. 2007; 9: 5307
    • 3b Wang Y, Li P, Liang X, Zhang TY, Ye J. Chem. Commun. 2008; 1232
    • 3c Tsakos M, Kokotos CG, Kokotos G. Adv. Synth. Catal. 2012; 354: 740
    • 4a Palomo C, Landa A, Mielgo A, Oiarbide M, Puente A, Vera S. Angew. Chem. Int. Ed. 2007; 46: 8431
    • 4b Ghosh SK, Zheng Z, Ni B. Adv. Synth. Catal. 2010; 352: 2378
  • 5 Maltsev OV, Kucherenko AS, Beletskaya IP, Tartakovsky VA, Zlotin SG. Eur. J. Org. Chem. 2010; 2927
    • 6a Mager I, Zeitler K. Org. Lett. 2010; 12: 1480
    • 6b Alza E, Sayalero S, Kasaplar P, Almaşi D, Pericàs MA. Chem. Eur. J. 2011; 17: 11585
  • 7 Jenesen KL, Poulsen PH, Donslund BS, Morana F, Jørgensen KA. Org. Lett. 2012; 14: 1516
  • 8 Hayashi Y, Itoh T, Ishikawa H. Angew. Chem. Int. Ed. 2011; 50: 3920
  • 9 Alonso B, Reyes E, Carrillo L, Vicario JL, Badía D. Chem. Eur. J. 2011; 17: 6048
  • 10 Xu F, Zacuto M, Yoshikawa N, Desmond R, Hoerrner S, Itoh T, Journet M, Humphrey GR, Cowden C, Strotman N, Devine P. J. Org. Chem. 2010; 75: 7829

    • See:
    • 11a Okino T, Hoashi Y, Takemoto Y. J. Am. Chem. Soc. 2003; 125: 12672
    • 11b Okino T, Hoashi Y, Furukawa T, Xu X, Takemoto Y. J. Am. Chem. Soc. 2005; 127: 119
    • 11c Vakulya B, Varga S, Csámpai A, Soós T. Org. Lett. 2005; 7: 1967
    • 11d Li B.-J, Jiang L, Liu M, Chen Y.-C, Ding L.-S, Wu Y. Synlett 2005; 603
    • 11e McCooey SH, Connon SJ. Angew. Chem. Int. Ed. 2005; 44: 6367
    • 11f Ye J, Dixon DJ, Hynes PS. Chem. Commun. 2005; 4481
  • 12 Okino T, Nakamura S, Furukawa T, Takemoto Y. Org. Lett. 2004; 6: 625
  • 13 Takemoto Y. Chem. Pharm. Bull. 2010; 58: 593
  • 14 Xie H, Zhang Y, Zhang S, Chen X, Wang W. Angew. Chem. Int. Ed. 2011; 50: 11773
  • 15 Parra A, Alfaro R, Marzo L, Moreno-Carrasco A, Ruano JL. G, Alemán J. Chem. Commun. 2012; 48: 9759
  • 16 Nodes WJ, Nutt DR, Chippindale AM, Cobb AJ. A. J. Am. Chem. Soc. 2009; 131: 16016
  • 17 Zhu Q, Lu Y. Org. Lett. 2009; 11: 1721
  • 18 Liu L, Wu D, Zheng S, Li T, Li X, Wang S, Li J, Li H, Wang W. Org. Lett. 2011; 13: 134
  • 19 Rabalakos C, Wulff WD. J. Am. Chem. Soc. 2008; 130: 13524
  • 20 Jörres M, Schiffers I, Atodiresei I, Bolm C. Org. Lett. 2012; 14: 4518
    • 21a Sohtome Y, Hashimoto Y, Nagasawa K. Adv. Synth. Catal. 2005; 347: 1643
    • 21b Takada K, Nagasawa K. Adv. Synth. Catal. 2009; 351: 345
  • 22 van Aken E, Wynberg H, van Bolhuis F. J. Chem. Soc., Chem. Commun. 1992; 629
  • 23 Davis TA, Wilt JC, Johnston JN. J. Am. Chem. Soc. 2010; 132: 2880
    • 24a Ooi T, Fujioka S, Maruoka K. J. Am. Chem. Soc. 2004; 126: 11790

    • For an example of phase-transfer-catalyzed addition of nitronates to conjugated esters from our laboratory, see:
    • 24b Nodes WJ, Shankland K, Rajkumar S, Cobb AJ. A. Synlett 2010; 3011
  • 25 Ooi T, Takada S, Fujioka S, Maruoka K. Org. Lett. 2005; 7: 5143
  • 26 Shirakawa S, Terao SJ, He R, Maruoka K. Chem. Commun. 2011; 47: 10557
  • 27 Ooi T, Doda K, Maruoka K. J. Am. Chem. Soc. 2003; 125: 9022
  • 28 Ooi T, Takada S, Doda K, Maruoka K. Angew. Chem. Int. Ed. 2006; 45: 7606
  • 29 Ooi T, Doda K, Maruoka K. J. Am. Chem. Soc. 2003; 125: 2054
    • 30a Fini F, Sgarzani V, Pettersen D, Herrera RP, Bernardi L, Ricci A. Angew. Chem. Int. Ed. 2005; 44: 7975
    • 30b Palomo C, Oiarbide M, Laso A, López R. J. Am. Chem. Soc. 2005; 127: 17622
    • 30c Gomez-Bengoa E, Linden A, López R, Múgica-Mendiola I, Oiarbide M, Palomo C. J. Am. Chem. Soc. 2008; 130: 7955
  • 31 Wei Y, He W, Liu Y, Liu P, Zhang S. Org. Lett. 2012; 14: 704
  • 32 Johnson KM, Rattley MS, Sladojevich F, Barber DM, Nuñez MG, Goldys AM, Dixon DJ. Org. Lett. 2012; 14: 2492
    • 33a Sulzer-Mosse S, Alexakis A. Chem. Commun. 2007; 3123
    • 33b Meninno S, Lattanzi A. Chem. Commun. 2013; 49: 3821
    • 33c Palomo C, Mielgo A. Angew. Chem. Int. Ed. 2006; 45: 7876
    • 33d Jensen KL, Dickmeiss G, Jiang H, Albrecht L, Jørgensen KA. Acc. Chem. Res. 2012; 45: 248
    • 33e Hayashi Y, Gotoh H, Hayashi T, Shoji M. Angew. Chem. Int. Ed. 2005; 44: 4212
    • 33f Cobb AJ. A, Shaw DM, Longbottom DA, Gold JB, Ley SV. Org. Biomol. Chem. 2005; 3: 84
    • 33g Mitchell CE. T, Cobb AJ. A, Ley SV. Synlett 2005; 611
    • 34a Patora-Komisarska K, Benohoud M, Ishikawa H, Seebach D, Hayashi Y. Helv. Chim. Acta 2011; 94: 719
    • 34b Seebach D, Sun X, Sparr C, Ebert M.-O, Schweizer WB, Beck AB. Helv. Chim. Acta 2012; 95: 1064
    • 34c Seebach D, Sun X, Ebert M.-O, Schweizer WB, Purkayastha N, Beck AK, Duschmalé J, Wennemers H. Helv. Chim. Acta 2013; 96: 799
    • 34d Burés J, Armstrong A, Blackmond DG. J. Am. Chem. Soc. 2012; 134: 6741
    • 34e Sahoo G, Rahaman H, Madarász A, Pápai I, Melarto M, Valkonen A, Pihko PM. Angew. Chem. Int. Ed. 2012; 51: 13144
    • 35a Chi Y, Guo L, Kopf NA, Gellman SH. J. Am. Chem. Soc. 2008; 130: 5608
    • 35b Guo L, Chi Y, Almeida AM, Guzei IA, Parker BK, Gellman SH. J. Am. Chem. Soc. 2009; 131: 16018
    • 36a Gellman SH. Acc. Chem. Res. 1998; 31: 173
    • 36b Hill DJ, Mio MJ, Prince RB, Hughes TS, Moore JS. Chem. Rev. 2001; 101: 3893
    • 37a Bahmanyar S, Houk KN. J. Am. Chem. Soc. 2001; 123: 11273
    • 37b Bahmanyar S, Houk KN, Martin HJ, List B. J. Am. Chem. Soc. 2003; 125: 2475
    • 37c Hoang L, Bahmanyar S, Houk KN, List B. J. Am. Chem. Soc. 2003; 125: 16
    • 37d List B, Hoang L, Martin HJ. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5839
    • 37e Clemente FR, Houk KN. Angew. Chem. Int. Ed. 2004; 43: 5765
  • 38 Wiesner M, Revell JD, Wennemers H. Angew. Chem. Int. Ed. 2008; 47: 1871
  • 39 Wiesner M, Upert G, Angelici G, Wennemers H. J. Am. Chem. Soc. 2010; 132: 6
  • 40 Duschmalé J, Wiest J, Wiesner M, Wennemers H. Chem. Sci. 2013; 4: 1312
  • 41 Zhong C, Chen Y, Petersen JL, Akhmedov NG, Shi X. Angew. Chem. Int. Ed. 2009; 48: 1279
  • 42 Bencivenni G, Galzerano P, Mazzanti A, Bartoli G, Melchiorre P. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 20642
  • 43 Belot S, Massaro A, Tenti A, Mordini A, Alexakis A. Org. Lett. 2008; 10: 4557
  • 44 Enders D, Wang C, Greb A. Adv. Synth. Catal. 2010; 352: 987
  • 45 Ahrendt KA, Borths CJ, MacMillan DW. C. J. Am. Chem. Soc. 2000; 122: 4243
  • 46 Liu Y, Nappi M, Arceo E, Vera S, Melchiorre P. J. Am. Chem. Soc. 2011; 133: 15212
    • 47a Jiang H, Rodríguez-Escrich C, Johansen TK, Davis RL, Jørgensen KA. Angew. Chem. Int. Ed. 2012; 51: 10271

    • See also:
    • 47b Aleman J, Parra A, Jiang H, Jørgensen KA. Chem. Eur. J. 2011; 17: 6890
  • 48 Etter MC. Acc. Chem. Res. 1990; 23: 120
  • 49 Etter MC, Panunto TW. J. Am. Chem. Soc. 1988; 110: 5896
  • 50 Hamza A, Schubert G, Soós T, Pápai I. J. Am. Chem. Soc. 2006; 128: 13151
    • 51a Bui T, Syed S, Barbas III CF. J. Am. Chem. Soc. 2009; 131: 8758

    • For a related metal-catalyzed process, see:
    • 51b Kato Y, Furutachi M, Chen Z, Mitsunuma H, Matsunaga S, Shibasaki M. J. Am. Chem. Soc. 2009; 131: 9168
  • 52 Kimmel KL, Weaver JD, Lee M, Ellman JA. J. Am. Chem. Soc. 2012; 134: 9058
  • 53 Wu WQ, Min L, Zhu ZL, Lee C.-S. Adv. Syn. Catal. 2011; 353: 1135
  • 54 Wu R, Chang X, Lu A, Wang Y, Wu G, Song H, Zhou Z, Tang C. Chem. Commun. 2011; 47: 5034
  • 55 Almaşi D, Alonso DA, Gómez-Bengoa E, Nájera C. J. Org. Chem. 2009; 74: 6163
  • 56 Uraguchi D, Kinoshita N, Nakashima D, Ooi T. Chem. Sci. 2012; 3: 3161
    • 57a Pracejus H, Wilcke F.-W, Hanemann K. J. Prakt. Chem. 1977; 319: 219

    • For a review on asymmetric Michael addition to nitroolefins, see:
    • 57b Berner OM, Tedeschi L, Enders D. Eur. J. Org. Chem. 2002; 1877
    • 58a Takenaka N, Chen J, Captain B, Sarangthem RS, Chandrakumar A. J. Am. Chem. Soc. 2010; 132: 4536

    • See also:
    • 58b Takenaka N, Sarangthem RS, Seerla SK. Org. Lett. 2007; 9: 2819
  • 59 Terada M, Ikehara T, Ube H. J. Am. Chem. Soc. 2007; 129: 14112

    • For reviews on the biological activity of α-aminophosphonic acids, see:
    • 60a Hiratake J, Oda J. Biosci., Biotechnol., Biochem. 1997; 61: 211
    • 60b Aminophosphonic and Aminophosphinic Acids . Kukhar VP, Hudson HR. John Wiley & Sons; New York: 2000
  • 61 Wang L, Shirakawa S, Maruoka K. Angew. Chem. Int. Ed. 2011; 50: 5327

    • For selected reviews, see:
    • 62a Enders D, Grondal C, Hüttl MR. M. Angew. Chem. Int. Ed. 2007; 46: 1570
    • 62b Grondal C, Jeanty M, Enders D. Nat. Chem. 2010; 2: 167
    • 62c Pellissier H. Chem. Rev. 2013; 113: 442
    • 62d Lu L.-Q, Chen J.-R, Xiao W.-J. Acc. Chem. Res. 2012; 45: 1278
    • 62e Marson CM. Chem. Soc. Rev. 2012; 41: 7712
  • 63 Cobb AJ. A In Enantioselective Organocatalyzed Reactions II: Asymmetric C-C Bond Formation Processes. Mahrwald R. Springer; Dordrecht: 2011
  • 64 Tsakos M, Elsegood MR. J, Kokotos CG. Chem. Commun. 2013; 49: 2219
  • 65 Talavera G, Reyes E, Vicario JL, Carrillo L. Angew. Chem. Int. Ed. 2012; 51: 4104
  • 66 Albrecht L, Dickmeiss G, Acosta FC, Rodríguez-Escrich C, Davis RL, Jørgensen KA. J. Am. Chem. Soc. 2012; 134: 2543
  • 67 Enders D, Hüttl MR. M, Grondal C, Raabe G. Nature 2006; 441: 861
  • 68 Zeng X, Ni Q, Raabe G, Enders D. Angew. Chem. Int. Ed. 2013; 52: 2977
  • 69 Rajkumar S, Shankland K, Brown GD, Cobb AJ. A. Chem. Sci. 2012; 3: 584
  • 70 Rajkumar S, Shankland K, Goodman JM, Cobb AJ. A. Org. Lett. 2013; 15: 1386
  • 71 Mao Z, Jia Y, Xu Z, Wang R. Adv. Synth. Catal. 2012; 354: 1401
    • 72a Yang W, Yang Y, Du D.-M. Org. Lett. 2013; 15: 1190

    • See also:
    • 72b Wang X.-F, Hua Q.-L, Cheng Y, An X.-L, Yang Q.-Q, Chen J.-R, Xiao W.-J. Angew. Chem. Int. Ed. 2010; 49: 8379
  • 73 Lu L.-Q, Li F, An J, Cheng Y, Chen J.-R, Xiao W.-J. Chem. Eur. J. 2012; 18: 4073