Synlett 2013; 24(2): 241-245
DOI: 10.1055/s-0032-1317931
letter
© Georg Thieme Verlag Stuttgart · New York

An Approach to the Synthesis of Enantiopure Tetrahydroisoquinoline via a Key Asymmetric Ugi Reaction

Li Pan
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. of China   Fax: +86(28)85413712   Email: chenxc@scu.edu.cn
,
Ruijiao Chen
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. of China   Fax: +86(28)85413712   Email: chenxc@scu.edu.cn
,
Dongshun Ni
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. of China   Fax: +86(28)85413712   Email: chenxc@scu.edu.cn
,
Liang Xia
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. of China   Fax: +86(28)85413712   Email: chenxc@scu.edu.cn
,
Xiaochuan Chen*
Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. of China   Fax: +86(28)85413712   Email: chenxc@scu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 31 October 2012

Accepted after revision: 28 November 2012

Publication Date:
13 December 2012 (online)


Abstract

An approach to the synthesis of the multisubstituted ­tetrahydroisoquinoline featuring an asymmetric Ugi reaction of α-amino acid, aromatic aldehyde and an isocyanide has been developed. The promising utility of the strategy is demonstrated by a ­synthesis of an enantiopure functionalized 1,3-trans-tetrahydroisoquinolin-4-ol from natural l-valine. The configuration of the two stereocenters at C-1 and C-4, generated in the Ugi reaction and Pomeranz–Fritsch-type cyclization separately, was controlled very well and determined by NMR studies.

Supporting Information

 
  • References and Notes

    • 1a Kim KH, Lee IK, Piao CJ, Choi SU, Lee JH, Kim YS, Lee KR. Bioorg. Med. Chem. Lett. 2010; 20: 4487
    • 1b Liu Y.-Q, Yang L, Tian X. Curr. Bioact. Compd. 2007; 3: 37
    • 1c Aune GJ, Furuta T, Pommier Y. Anti-Cancer Drugs 2002; 13: 545
    • 1d Scott J, Williams RM. Chem. Rev. 2002; 102: 1669
    • 1e Ida A, Kano M, Kubota Y, Koga K, Tomioka K. Chem. Pharm. Bull. 2000; 48: 486
    • 2a Stingl J, Andersen RJ, Emerman JT. Cancer Chemother. Pharmacol. 1992; 30: 401
    • 2b Pathirana C, Andersen RJ. J. Am. Chem. Soc. 1986; 108: 8288
    • 3a Alberte RS, Roschek JR, William P, Dan L. US Patent US20100009927, 2010
    • 3b Ranieri RL, McLaughlin JL. J. Org. Chem. 1976; 41: 319
    • 4a Bringmann G, Gunther C, Saeb W, Mies J, Brun R, Ake Assi L. Phytochemistry 2000; 54: 337
    • 4b Bentley KW. Nat. Prod. Rep. 2002; 19: 332
  • 5 Onoda T, Takikawa Y, Fujimoto T, Yasui Y, Suzuki K, Matsumoto T. Synlett 2009; 1041
  • 6 Buchanan MS, Davis RA, Duffy S, Avery VM, Quinn RJ. J. Nat. Prod. 2009; 72: 1541
  • 7 Chimirri A, De Luca L, Ferro S, De Sarro G, Ciranna L, Gitto R. ChemMedChem 2009; 4: 917
    • 8a Yu Q.-S, Luo W, Deschamps J, Holloway HW, Kopajtic T, Katz JL, Brossi A, Greig NH. ACS Med. Chem. Lett. 2010; 1: 105
    • 8b Hayden MR, Leavitt BR, Yasothan U, Kirkpatrick P. Nat. Rev. Drug Discovery 2009; 8: 17
    • 8c Kilbourn MR, Hockley B, Lee L, Hou C, Goswami R, Ponde DE, Kung M.-P, Kung HF. Nucl. Med. Biol. 2007; 34: 233
    • 8d Goswami R, Ponde DE, Kung M.-P, Hou C, Kilbourn MR, Kung HF. Nucl. Med. Biol. 2006; 33: 685
    • 8e Lee CL, Van der Borght T, Sherman PS, Frey KA, Kilbourn MR. J. Med. Chem. 1996; 39: 191
    • 9a Lee KM, Kima JC, Kang P, Lee WK, Eumb H, Ha H.-J. Tetrahedron 2012; 68: 883
    • 9b Srivastava AK, Koh M, Park SB. Chem. Eur. J. 2011; 17: 4905
    • 9c Aubry S, Pellet-Rostaing S, Lemaire M. Eur. J. Org. Chem. 2007; 5212
    • 9d Chen X, Zhu J. Angew. Chem. Int. Ed. 2007; 46: 3962
    • 9e Fishlock D, Williams RM. Org. Lett. 2006; 8: 3299
    • 9f Chen X, Chen J, Zhu J. Synthesis 2006; 4081
    • 9g Lane JW, Chen Y, Williams RM. J. Am. Chem. Soc. 2005; 127: 12684
    • 9h Chen X, Chen J, De Paolis M, Zhu J. J. Org. Chem. 2005; 70: 4397
    • 9i Marcantoni E, Petrini M, Profeta R. Tetrahedron Lett. 2004; 45: 2133
    • 9j Saitoh T, Shikiya K, Horiguchi Y, Sano T. Chem. Pharm. Bull. 2003; 51: 667
    • 9k De Paolis M, Chiaroni A, Zhu J. Chem. Commun. 2003; 2896
    • 9l Ohba M, Nishimura Y, Kato M, Fujll T. Tetrahedron 1999; 55: 4999
    • 9m Tellitu I, Badfa D, Domfnguez E, Garcfa FJ. Tetrahedron: Asymmetry 2002; 13: 1929
    • 9n Brossi A, Focella A, Teitel S. Helv. Chim. Acta 1972; 55: 15
    • 11a Demharter A, Horl W, Herdtweck E, Ugi I. Angew. Chem., Int. Ed. Engl. 1996; 35: 173
    • 11b Ugi I, Demharter A, Hiirl W, Sehmid T. Tetrahedron 1996; 52: 11657
    • 11c Kadzimirsz D, Hildebrandt D, Merz K, Dyker G. Chem. Commun. 2006; 661
    • 11d Sollis SL. J. Org. Chem. 2005; 70: 4735
    • 11e Sung K, Chen F.-L, Chung M.-J. Mol. Divers. 2003; 6: 213
    • 11f Dyker G, Breitenstein K, Henkel G. Tetrahedron: Asymmetry 2002; 13: 1929
    • 12a Hayashi K, Nunami K, Kato J, Yoneda N, Kubo M, Ochiai T, Ishida R. J. Med. Chem. 1989; 32: 289
    • 12b Blankley CJ, Kaltenbronn JS, DeJohn DE, Werner A, Bennett LR, Bobowski G, Krolls U, Johnson DR, Pearlman WM, Hoefle ML, Essenburg AD, Cohen DM, Kaplan HR. J. Med. Chem. 1987; 30: 992
    • 12c Maycock AL, DeSousa DM, Payne LG, Broeke JT, Wu MT, Patchett AA. Biochem. Biophys. Res. Commun. 1981; 102: 963
    • 12d Patchett AA, Harris E, Tristram EW, Wyvratt MJ, Wu MT, Taub D, Peterson ER, Ikeler TJ, Broeke JT, Payne LG, Ondeyka DL, Thorsett ED, Greenlee WJ, Lohr NS, Hoffsommer RD, Joshua H, Ruyle WV, Rothrock JW, Aster SD, Maycock AL, Robinson FM, Hirschmann R, Sweet CS, Ulm EH, Gross DM, Vassil TC, Stone CA. Nature (London) 1980; 288: 280
  • 13 Sollis SL. J. Org. Chem. 2005; 70: 4735
  • 14 Turner CD, Ciufolini MA. Org. Lett. 2012; 14: 4970
    • 15a Rikimaru K, Yanagisawa A, Kan T, Fukuyama T. Synlett 2004; 41
    • 15b Kennedy AL, Fryer AM, Josey JA. Org. Lett. 2002; 4: 1167
    • 15c Lindhorst T, Bock H, Ugi I. Tetrahedron 1999; 55: 7411
  • 16 Godet T, Bonvin Y, Vincent G, Merle D, Thozet A, Ciufolini MA. Org. Lett. 2004; 6: 3281
  • 17 8: [α]D 20 –74 (c = 0.6, in CH2Cl2). IR (neat): 3372, 2960, 2838, 1739, 1678, 1514, 1461, 1395, 1262, 1147, 1026, 903, 789, 739 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.32–7.37 (m, 5 H), 6.78–6.91 (m, 3 H), 5.13 (s, 2 H), 4.15–4.28 (m, 2 H), 4.13 (s, 1 H), 3.84 (s, 3 H), 3.82 (s, 3 H), 3.69 (s, 3 H), 3.43–3.65 (m, 2 H), 2.85 (d, J = 6.0 Hz, 1 H), 1.91–2.01 (m, 1 H), 0.93 (d, J = 6.8 Hz, 3 H), 0.90 (d, J = 6.8 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 174.8, 172.2, 154.9, 149.3, 149.1, 143.0, 130.3, 128.6, 128.3, 120.9, 111.1, 110.3, 69.8, 66.6, 66.1, 65.2, 64.0, 55.8, 55.7, 51.6, 38.6, 31.3, 19.4, 18.4. HRMS (ESI+): m/z [M + H]+ calcd for C26H35N2O8: 503.2393; found: 503.2391.
    • 18a Zhou B, Guo J, Danishefsky SJ. Org. Lett. 2002; 4: 43
    • 18b Scott JD, Williams RM. Angew. Chem. Int. Ed. 2001; 40: 1463
    • 18c Głuszyńska A, Rozwadowska MD. Tetrahedron: Asymmetry 2000; 11: 2359
  • 19 19: [α]D 20 +3 (c = 0.7, in CH2Cl2). IR (neat): 3498, 2954, 2928, 2859, 2710, 2610, 2252, 1608, 1510, 1462, 1343, 1311, 1251, 1221, 1152, 1108, 1046, 934, 838, 775, 666, 637 cm–1. 1H NMR (400 MHz, CDCl3): δ = 6.80 (s, 1 H), 6.77 (s, 1 H), 4.57 (br t, J = 6.2 Hz, 1 H), 3.99 (t, J = 5.8 Hz, 1 H), 3.89 (s, 3 H), 3.88 (s, 3 H), 3.86–3.88 (m, 2 H), 3.74 (dd, J = 5.8, 9.9 Hz, 1 H), 3.59 (d, J = 17.5 Hz, 1 H), 2.73 (dd, J = 2.4, 10.5 Hz, 1 H), 2.08–2.12 (m, 1 H), 1.59 (d, J = 2.9 Hz, 1 H), 1.10 (d, J = 4.5 Hz, 3 H), 1.09 (d, J = 4.6 Hz, 3 H), 0.85 (s, 9 H), 0.01 (s, 3 H), –0.04 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 149.0, 148.6, 129.1, 125.9, 118.8, 111.6, 111.1, 66.8, 64.8, 63.7, 62.2, 55.9, 38.7, 25.8, 20.3, 20.0, 18.1, –5.4, –5.6. HRMS (ESI+): m/z [M + H]+ calcd for C23H39N2O4Si: 435.2679; found: 435.2675.