Synthesis 2012; 44(19): 2969-2984
DOI: 10.1055/s-0032-1317011
review
© Georg Thieme Verlag Stuttgart · New York

Recent Applications of Cyclopropane-Based Strategies to Natural Product Synthesis

Pei Tang
a  Innovative Drug Research Centre, College of Chemistry, Chemical Engineering and Bioengineering, Chongqing University, Chongqing, 401331, P. R. of China, Fax: +86(23)65678750   Email: qinyong@cqu.edu.cn
,
Yong Qin*
a  Innovative Drug Research Centre, College of Chemistry, Chemical Engineering and Bioengineering, Chongqing University, Chongqing, 401331, P. R. of China, Fax: +86(23)65678750   Email: qinyong@cqu.edu.cn
b  Key Laboratory of Drug Targeting and Novel Delivery System of the Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, P. R. of China
› Author Affiliations
Further Information

Publication History

Received: 26 May 2012

Accepted after revision: 06 July 2012

Publication Date:
20 August 2012 (online)


Abstract

Activated cyclopropanes show versatile reactivity and are therefore powerful building blocks in organic chemistry and natural product synthesis. This review focuses on recent applications of cyclopropane-based approaches to the syntheses of natural products. These applications include diverse processes involving cyclopropanation–ring-opening–cyclization or ring expansion to form key natural product skeletons.

1 Introduction

2 Formal Cycloaddition Strategies

2.1 Formal [3+2] Cycloaddition with Aldehydes and Ketones

2.2 Formal [4+3] Cycloaddition via Cope Rearrangement

2.3 Cycloaddition with Transition Metals

3 Cyclopropanation–Ring-Opening Strategies

4 Cyclopropanation–Ring-Opening–Cyclization Strategies

5 Ring Closing via Cyclopropanation

6 Conclusion

 
  • References


    • For general reviews on cyclopropanes, see:
    • 1a Danishefsky S. Acc. Chem. Res. 1979; 12: 66
    • 1b Wong HN. C, Hon MY, Tse CW, Yip YC, Tanko J, Hudlicky T. Chem. Rev. 1989; 89: 165
    • 1c Ye T, McKervey MA. Chem. Rev. 1994; 94: 1091
    • 1d Doyle MP, Protopopova MN. Tetrahedron 1998; 54: 7919
    • 1e Lebel H, Marcoux JF, Molinaro C, Charette AB. Chem. Rev. 2003; 103: 977
    • 1f Sydnes LK. Chem. Rev. 2003; 103: 1133
    • 1g Brandi A, Cicchi S, Cordero FM, Goti A. Chem. Rev. 2003; 103: 1213
    • 1h Baldwin JE. Chem. Rev. 2003; 103: 1197
    • 1i Shi M, Lu JM, Wei Y, Shao LX. Acc. Chem. Res. 2012; 45: 641

      For recent reviews on donor–acceptor (DA) cyclopropanes, see:
    • 2a Reissig HU, Zimmer R. Chem. Rev. 2003; 103: 1151
    • 2b Yu M, Pagenkopf BL. Tetrahedron 2005; 61: 321
    • 2c Melnikov MY, Budynina EM, Ivanova OA, Trushkov IV. Mendeleev Commun. 2011; 21: 293

      For reviews on cyclopropane-based strategies in natural product synthesis, see:
    • 3a Davies HM. L, Denton JR. Chem. Soc. Rev. 2009; 38: 3061
    • 3b Carson CA, Kerr MA. Chem. Soc. Rev. 2009; 38: 3051
    • 3c Simone FD, Waser J. Synthesis 2009; 3353
    • 3d Honma M, Takeda H, Takano M, Nakada M. Synlett 2009; 1695
    • 3e Reisman SE, Nani RR, Levin S. Synlett 2011; 2437
    • 3f Simone FD, Waser J. Synlett 2011; 589
    • 3g Zhang D, Song H, Qin Y. Acc. Chem. Res. 2011; 44: 447
  • 4 Such reactions are called ‘formal cycloaddition’ or ‘cycloaddition’ by many authors, but discussion continues about whether the term ‘cycloaddition’ is appropriate for reactions involving cyclopropanes.
  • 5 Sathishkannan G, Srinivasan K. Org. Lett. 2011; 13: 6002
  • 6 Ivanova OA, Budynina EM, Chagarovskiy AO, Trushkov IV, Melnikov MY. J. Org. Chem. 2011; 76: 8852
  • 7 Benfatti F, Nanteuil FD, Waser J. Org. Lett. 2012; 14: 386
  • 8 Karadeolian A, Kerr MA. Angew. Chem. Int. Ed. 2010; 49: 1133
  • 9 Campbell MJ, Johnson JS. J. Am. Chem. Soc. 2009; 131: 10370
    • 10a Xing SY, Pan WY, Liu C, Ren J, Wang ZW. Angew. Chem. Int. Ed. 2010; 49: 3215
    • 10b Xing SY, Li Y, Li Z, Liu C, Ren J, Wang ZW. Angew. Chem. Int. Ed. 2011; 50: 12605
    • 10c Bai Y, Tao WJ, Ren J, Wang ZW. Angew. Chem. Int. Ed. 2012; 51: 4112
    • 10d Hu B, Xing SY, Ren J, Wang ZW. Tetrahedron 2010; 66: 5671
    • 11a Nicolaou KC, Li A, Edmonds DJ. Angew. Chem. Int. Ed. 2006; 45: 7086
    • 11b McGrath NA, Bartlett ES, Sittihan S, Njardarson JT. Angew. Chem. Int. Ed. 2009; 48: 8543
    • 11c Tiefenbacher K, Mulzer J. Angew. Chem. Int. Ed. 2007; 46: 8074
    • 12a Lee J, Kim H, Cha JK. J. Am. Chem. Soc. 1995; 117: 9919
    • 12b Kusama H, Onizawa Y, Iwasawa N. J. Am. Chem. Soc. 2006; 128: 16500
  • 13 Lian YJ, Miller LC, Born S, Sarpong R, Davies HM. L. J. Am. Chem. Soc. 2010; 132: 12422
  • 14 Vaswani RG, Day JJ, Wood JL. Org. Lett. 2009; 11: 4532
  • 15 Shimokawa J, Harada T, Yokoshima S, Fukuyama T. J. Am. Chem. Soc. 2011; 133: 17634
    • 16a Wender PA, Fuji M, Husfeld CO, Love JA. Org. Lett. 1999; 1: 137
    • 16b Wender PA, Takahashi H, Witulski B. J. Am. Chem. Soc. 1995; 117: 4720
    • 16c Wender PA, Williams TJ. Angew. Chem. Int. Ed. 2002; 41: 4550
    • 17a Trost BM, Toste FD, Shen H. J. Am. Chem. Soc. 2000; 122: 2379
    • 17b Trost BM, Shen HC, Horne DB, Toste FD, Steinmetz BG, Koradin C. Chem.–Eur. J. 2005; 11: 2577
  • 18 Trost BM, Waser J, Meyer A. J. Am. Chem. Soc. 2007; 129: 14556
    • 19a Wang YY, Wang JX, Su JC, Huang F, Jiao L, Liang Y, Yang DZ, Zhang SW, Wender PA, Yu ZX. J. Am. Chem. Soc. 2007; 129: 10060
    • 19b Yu ZX, Wang Y, Wang YY. Chem.–Asian J. 2010; 5: 1072
    • 19c Jiao L, Yuan CX, Yu ZX. J. Am. Chem. Soc. 2008; 130: 4421
    • 19d Fan XH, Zhuo LG, Tu YQ, Yu ZX. Tetrahedron 2009; 65: 4709
    • 19e Fan XH, Tang MX, Zhuo LG, Tu YQ, Yu ZX. Tetrahedron Lett. 2009; 50: 155
    • 19f Yuan CX, Jiao L, Yu ZX. Tetrahedron Lett. 2010; 51: 5674
    • 19g Liang Y, Jiang X, Yu ZX. Chem. Commun. 2011; 47: 6659
    • 19h Liang Y, Jiang X, Fu XF, Ye SY, Wang T, Yuan J, Wang YY, Yu ZX. Chem.–Asian J. 2012; 7: 593
    • 19i Jiao L, Lin M, Zhuo LG, Yu ZX. Org. Lett. 2010; 12: 2528
    • 19j Lin M, Li F, Jiao L, Yu ZX. J. Am. Chem. Soc. 2011; 133: 1690
  • 20 Goldberg AF. G, Stoltz BM. Org. Lett. 2011; 13: 4474
  • 21 Dai MJ, Krauss IJ, Danishefsky SJ. J. Org. Chem. 2008; 73: 9576
    • 22a Bon DJ. Y. D, Banwell MG, Cade IA, Willis AC. Tetrahedron 2011; 67: 8348
    • 22b Bon DJ. Y. D, Banwell MG, Willis AC. Tetrahedron 2010; 66: 7807
  • 23 Liau BB, Shair MD. J. Am. Chem. Soc. 2010; 132: 9594
  • 24 Mancey NC, Sandon N, Auvinet AL, Butlin RJ, Czechtizky W, Harrity JP. A. Chem. Commun. 2011; 47: 9804
    • 25a Hirai S, Nakada M. Tetrahedron Lett. 2010; 51: 5076
    • 25b Hirai S, Nakada M. Tetrahedron 2011; 67: 518
  • 26 Nicolaou KC, Tria GS, Edmonds DJ. Angew. Chem. Int. Ed. 2008; 47: 1780
  • 27 Zou Y, Chen CH, Taylor CD, Foxman BM, Snider BB. Org. Lett. 2007; 9: 1825
    • 28a Uwamori M, Saito A, Nakada M. J. Org. Chem. 2012; 77: 5098
    • 28b Abe M, Saito A, Nakada M. Tetrahedron Lett. 2010; 51: 1298

      For reviews, see:
    • 29a Kulinkovich OG. Chem. Rev. 2003; 103: 2597
    • 29b Gibson DH, DePuy CH. Chem. Rev. 1974; 74: 605
  • 30 Keaton KA, Phillips AJ. Org. Lett. 2007; 9: 2717
  • 31 Xiao Q, Ren WW, Chen ZX, Sun TW, Li Y, Ye QD, Gong JX, Meng FK, You L, Liu YF, Zhao MZ, Xu LM, Shan ZH, Shi Y, Tang YF, Chen JH, Yang Z. Angew. Chem. Int. Ed. 2011; 50: 7373
  • 32 For a review, see: Battiste MA, Pelphrey PM, Wright DL. Chem.–Eur. J. 2006; 12: 3438
  • 33 Chiba S, Kitamura M, Narasaka K. J. Am. Chem. Soc. 2006; 128: 6931
  • 34 Zhang H, Curran DP. J. Am. Chem. Soc. 2011; 133: 10376
  • 35 Gharpure SJ, Nanda LN, Shukla MK. Eur. J. Org. Chem. 2011; 6632
  • 36 Harrar K, Reiser O. Chem. Commun. 2012; 48: 3457
  • 37 Perali RS, Kalapati S. Tetrahedron 2012; 68: 3725
  • 38 Granger K, Snapper ML. Eur. J. Org. Chem. 2012; 2308
  • 39 Patil DV, Cavitt MA, France S. Heterocycles 2012; 84: 1363
  • 40 Peixoto PA, Richard JA, Severin R, Chen DY. K. Org. Lett. 2011; 13: 5724