Synlett 2013; 24(9): 1044-1060
DOI: 10.1055/s-0032-1316913
account
© Georg Thieme Verlag Stuttgart · New York

From the Development of Catalysts for Alkyne and Alkyne–Nitrile [2+2+2] Cycloaddition Reactions to Their Use in Polymerization Reactions

Sentaro Okamoto*
Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686, Japan   Fax: +81(45)4139770   Email: [email protected]
,
Yu-ki Sugiyama
Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686, Japan   Fax: +81(45)4139770   Email: [email protected]
› Author Affiliations
Further Information

Publication History

Received: 07 February 2013

Accepted after revision: 18 March 2013

Publication Date:
12 April 2013 (online)


Abstract

Several systems consisting of a ligand, a metal compound, and zinc have been developed as catalysts for alkyne cycloaddition reactions and alkyne–nitrile co-cycloaddition reactions. N-Heterocyclic carbene (NHC)–iron(III) chloride–zinc, NHC–cobalt(II) chloride-zinc, and 2-{[(2,6-diisopropylphenyl)imino]methyl}pyridine (dipimp)–iron(III) chloride hexahydrate–zinc systems catalyzed intramolecular cyclotrimerization reactions of alkynes. The dipimp–cobalt(II) chloride hexahydrate–zinc system catalyzed cycloaddition reactions of a variety of alkynes in intramolecular, partially intramolecular, and fully intermolecular fashions. The ethane-1,2-diylbis(diphenylphosphine)–cobalt(II) chloride hexahydrate–zinc system was effective in catalyzing the [2 + 2 + 2] co-cycloaddition of diynes with nitriles. Nickel complexes with an ionic liquid-tagged ligand converted 1,6-diynes into the corresponding cyclooctatetraenes in a toluene–ionic liquid biphasic system in the presence of zinc. The dipimp–nickel(II) chloride hexahydrate–zinc catalyst polymerized 1,6-diynes to form conjugated polyene cyclic polymers. These results and their applications in synthesis, including controlled polymerization reactions, are described.

1 Introduction

2 Alkyne [2+2+2] Cycloaddition

2.1 Development of N-Heterocyclic Carbene–Cobalt or Iron Compound–Zinc Catalyst Systems

2.2 Development of 2-{[(2,6-Diisopropylphenyl)imino]methyl}pyridine–Cobalt or Iron Salt–Zinc Catalyst Systems

2.2.1 Development of 2-{[(2,6-Diisopropylphenyl)imino]methyl}pyridine–Iron Chloride–Zinc Catalyst Systems

2.2.2 Development of the 2-{[(2,6-Diisopropylphenyl)imino]methyl}pyridine–Iron Chloride Hexahydrate–Zinc Catalyst System

2.3 The 2-{[(2,6-Diisopropylphenyl)imino]methyl}pyridine–Cobalt(II) Chloride Hexahydrate–Zinc Catalyst System

2.3.1 Reactivity and Functional Group Compatibility

2.3.2 Catalyst Activation

3 Alkyne–Nitrile [2+2+2] Co-cycloaddition

4 Applications

4.1 Uses in Organic Synthesis

4.2 Use as a Method for Polymer Synthesis

4.2.1 Preparation of Diverse Polymerizable Molecules (a Monomer Library)

4.2.2 Use in Polymer Functionalization

4.2.3 Use as a Polymerization Reaction

5 Other Reactions

5.1 Nickel-Catalyzed [2+2+2+2] Cycloaddition and Cycloaddition Polymerization of 1,6-Diynes

5.2 Hydroalkynylation of Internal Alkynes

6 Conclusion

 
  • References

    • 1a Grotjahn DB In Comprehensive Organometallic Chemistry II . Vol. 12. Abel EW, Stone FG. A, Wilkinson G. Pergamon; Oxford: 1995: 741
    • 1b Schore NE In Comprehensive Organic Synthesis . Vol. 5. Trost BM, Fleming I, Paquette LA. Pergamon; Oxford: 1991: 1129
    • 1c Saito S, Yamamoto Y. Chem. Rev. 2000; 100: 2901
    • 1d Malacria M, Aubert C, Renaud J.-L In Science of Synthesis . Vol. 1. Lautens M, Trost BM. Georg Thieme Verlag; Stuttgart: 2001: 439
    • 1e Yamamoto Y. Curr. Org. Chem. 2005; 9: 503
    • 1f Kotha S, Brahmachary E, Lahiri K. Eur. J. Org. Chem. 2005; 4741
    • 1g Gandon V, Aubert C, Malacria M. Curr. Org. Chem. 2005; 9: 1699
    • 1h Gandon V, Aubert C, Malacria M. Chem. Commun. 2006; 2209
    • 1i Tanaka K. Chem. Asian J. 2009; 4: 508
    • 2a Trost BM, Krische MJ. Synlett 1998; 1
    • 2b Trost BM. Science 1991; 254: 1471
    • 2c Trost BM. Acc. Chem. Res. 2002; 35: 695
  • 3 Reppe W, Schweckendiek WJ. Justus Liebigs Ann. Chem. 1948; 560: 104
    • 4a Bönnenmann H. Angew. Chem., Int. Ed. Engl. 1985; 24: 248
    • 4b Varela JA, Saá C. Chem. Rev. 2003; 103: 3787
    • 4c Nakamura I, Yamamoto Y. Chem. Rev. 2004; 104: 2127
    • 4d Chopade PR, Louie J. Adv. Synth. Catal. 2006; 348: 2307
    • 4e Heller B, Hapke M. Chem. Soc. Rev. 2007; 36: 1085
    • 5a Wakatsuki Y, Yamazaki H. J. Chem. Soc., Chem. Commun. 1973; 280
    • 5b Wakatsuki Y, Yamazaki H. J. Chem. Soc., Dalton Trans. 1978; 1278
    • 6a Chang CA, Francisco CG, Gadek TR, King JJ. A, Sternberg ED, Vollhardt KP. C In Organic Synthesis Today and Tomorrow . Trost BM, Hutchinson CR. Pergamon; Oxford: 1981: 71
    • 6b Vollhardt KP. C. Angew. Chem., Int. Ed. Engl. 1984; 23: 536
    • 6c Vollhardt KP. C. Pure Appl. Chem. 1985; 57: 1819
    • 6d Vollhardt KP. C. Pure Appl. Chem. 1993; 65: 153
    • 6e Eickmeier C, Holmes D, Junga H, Matzger AJ, Scherhag F, Shim M, Vollhardt KP. C. Angew. Chem. Int. Ed. 1999; 38: 800
    • 6f Aubert C, Buisine O, Petit M, Slowinski F, Malacria M. Pure Appl. Chem. 1999; 71: 1463
    • 6g Slowinski F, Aubert C, Malacria M. J. Org. Chem. 2003; 68: 378
  • 7 Geny A, Agenet N, Iannazzo L, Malacria M, Aubert C, Gandon V. Angew. Chem. Int. Ed. 2009; 48: 1810 ; and references cited therein

    • Recent examples of cobalt salt/Zn-catalyzed reactions other than cyclotrimerizations; for Alder–ene reactions of alkynes, see:
    • 8a Hilt G, Treutwein J. Chem. Commun. 2009; 1395
    • 8b Kersten L, Roesner S, Hilt G. Org. Lett. 2010; 12: 4920
    • 8c Arndt M, Reinhold A, Hilt G. J. Org. Chem. 2010; 75: 5203
    • 8d Hilt G, Arndt M, Weske DF. Synthesis 2010; 1321
    • 8e Hilt G, Erver F, Harms K. Org. Lett. 2011; 13: 304

    • For hydroalkynylation reactions, see:
    • 8f Sawano T, Ou K, Nishimura T, Hayashi T. Chem. Commun. 2012; 48: 6106

    • For addition of silylacetylenes to enones and dienones, see:
    • 8g Nishimura T, Sawano T, Ou K, Hayashi T. Chem. Commun. 2011; 47: 10142
    • 8h Sawano T, Ashouri A, Nishimura T, Hayashi T. J. Am. Chem. Soc. 2012; 134: 18936

    • For Diels–Alder reactions, see:
    • 8i Erver F, Kuttner JR, Hilt G. J. Org. Chem. 2012; 77: 8375
    • 8j Danz M, Hilt G. Adv. Synth. Catal. 2011; 353: 303
    • 8k Auvinet A.-L, Harrity JP. A, Hilt G. J. Org. Chem. 2010; 75: 3893
    • 8l Hilt G, Janikowski J. Org. Lett. 2009; 11: 773

    • For 1,4-hydrovinylation reactions, see:
    • 8m Hilt G. Synlett 2011; 1654
    • 8n Kersten L, Hilt G. Adv. Synth. Catal. 2012; 354: 863
    • 8o Erver F, Hilt G. Org. Lett. 2011; 13: 5700
    • 8p Hilt G, Roesner S. Synthesis 2011; 662 ; and refs. 8c and 8d

    • For reductive coupling reactions, see:
    • 8q Wei C.-H, Mannathan S, Cheng C.-H. Angew. Chem. Int. Ed. 2012; 51: 10592
    • 8r Mannathan S, Cheng C.-H. Chem. Eur. J. 2012; 18: 11771
    • 8s Wei C.-H, Mannathan S, Cheng C.-H. J. Am. Chem. Soc. 2011; 133: 6942
    • 8t Mannathan S, Cheng C.-H. Chem. Commun. 2010; 46: 1923
    • 8u Wong Y.-C, Parthasarathy K, Cheng C.-H. J. Am. Chem. Soc. 2009; 131: 18252

      For titanium, see:
    • 9a Sato F, Okamoto S. Adv. Synth. Catal. 2001; 343: 759
    • 9b Sato F, Urabe H, Okamoto S. Chem. Rev. 2000; 100: 2835
    • 9c Sato F, Urabe H, Okamoto S. Synlett 2000; 753
    • 9d Kawaji T, Shoji N, Miyashita K, Okamoto S. Chem. Commun. 2011; 47: 7857 ; and references cited therein

    • For other metals, see:
    • 9e http://apchem2.kanagawa-u.ac.jp/~okamotolab/index.html (accessed March 28th, 2013).
    • 10a Wanzlick HW, Schönherr H.-J. Angew. Chem., Int. Ed. Engl. 1968; 7: 141
    • 10b Öfele K. J. Organomet. Chem. 1968; 12: P42
    • 10c Arduengo AJ. III, Dias HV. R, Harlow RL, Kline M. J. Am. Chem. Soc. 1992; 114: 5530
    • 10d Arduengo AJ. III, Harlow RL, Kline M. J. Am. Chem. Soc. 1991; 113: 361
    • 10e Herrmann WA, Köcher C. Angew. Chem., Int. Ed. Engl. 1997; 36: 2162
    • 10f Arduengo AJ. III. Acc. Chem. Res. 1999; 32: 2, 913
    • 10g Bourissou D, Guerret O, Gabbaï FP, Bertrand G. Chem. Rev. 2000; 100: 39
    • 10h Weskamp T, Böhm VP. W, Herrmann WA. J. Organomet. Chem. 2000; 600: 12
    • 10i Herrmann WA. Angew. Chem. Int. Ed. 2002; 41: 1290
    • 10j Cavell KJ, McGuinness DS. Coord. Chem. Rev. 2004; 248: 671
    • 10k Cowley AH. J. Organomet. Chem. 2001; 617: 105
    • 10l Enders D, Gielen H. J. Organomet. Chem. 2001; 617: 70
    • 10m Herrmann WA, Weskamp T, Böhm VP. W. Adv. Organomet. Chem. 2001; 48: 1
    • 10n Jafarpour L, Nolan SP. Adv. Organomet. Chem. 2001; 46: 181
    • 10o N-Heterocyclic Carbenes in Synthesis . Nolan SP. Wiley-VHC; Weinheim: 2006
    • 11a Tominaga S, Oi Y, Kato T, Am DK, Okamoto S. Tetrahedron Lett. 2004; 45: 5585
    • 11b Okamoto S, Tominaga S, Saino N, Kase K, Shimoda K. J. Organomet. Chem. 2005; 690: 6001
    • 11c Okamoto S, Tominaga S, Saino N, Kase K, Shimoda K. J. Organomet. Chem. 2007; 692: 2114
  • 12 McCormick MM, Duong HA, Zuo G, Louie J. J. Am. Chem. Soc. 2005; 127: 5030
  • 13 Saino N, Kogure D, Okamoto S. Org. Lett. 2005; 7: 3065
    • 14a Cámpora J, del Mar Conejo M, Mereiter K, Palma P, Pérez C, Reyes ML, Ruiz C. J. Organomet. Chem. 2003; 683: 220

    • For catalysis using dipimp, see:
    • 14b Wu JY, Moreau B, Ritter T. J. Am. Chem. Soc. 2009; 131: 12915
    • 14c Kanas DA, Geier SJ, Vogels CM, Decken A, Westcott SA. Inorg. Chem. 2008; 47: 8727
    • 14d Bianchini C, Lee AM, Mantovani G, Meli A, Oberhauser W. New J. Chem. 2002; 26: 387
    • 14e Shejwalkar P, Rath NP, Bauer EB. Dalton Trans. 2011; 40: 7617

    • For polymerizations, see:
    • 14f Britovsek GJ. P, Baugh SP. D, Hoarau O, Gibson VC, Wass DF, White AJ. P, Williams DJ. Inorg. Chim. Acta 2003; 345: 279
    • 14g Laine TV, Piironen U, Lappalainen K, Klinga M, Aitola E, Leskelä M. J. Organomet. Chem. 2000; 606: 112
    • 14h Köppl A, Alt HG. J. Mol. Catal. A: Chem. 2000; 154: 45
  • 15 Saino N, Kogure D, Kase K, Okamoto S. J. Organomet. Chem. 2006; 691: 3129
  • 16 Bönnemann H, Brinkmann R, Schenkluhn H. Synthesis 1974; 575
    • 17a Chiusoli GP, Costa M, Reverberi S, Terenghi MG. Transition Met. Chem. 1989; 14: 238
    • 17b Chiusoli GP, Terenghi G. Transition Met. Chem. 1984; 9: 360
  • 18 Slowinski F, Aubert C, Malacria M. Adv. Synth. Catal. 2001; 343: 64
    • 19a Hilt G, Hengst C, Hess W. Eur. J. Org. Chem. 2008; 2293
    • 19b Hilt G, Vogler T, Hess W, Galbiati F. Chem. Commun. 2005; 1474
    • 19c Hilt G, Hess W, Vogler T, Hengst C. J. Organomet. Chem. 2005; 690: 5170

      For cycloadditions catalyzed by CoI2(PPh)2–Zn or CoI2(dppe)–Zn, see:
    • 20a Chao KC, Rayabarapu DK, Wang C.-C, Cheng C.-H. J. Org. Chem. 2001; 66: 8804
    • 20b Wu M.-S, Rayabarapu DK, Cheng C.-H. Tetrahedron 2004; 60: 10005
    • 20c Chang H.-T, Jeganmohan M, Cheng C.-H. Chem. Commun. 2005; 4955
  • 21 Saino N, Amemiya F, Tanabe E, Kase K, Okamoto S. Org. Lett. 2006; 8: 1439
  • 22 Saino N.; Ph.D. Thesis; Kanagawa University: Japan, 2009.
  • 23 Unpublished results.
  • 24 Sugiyama Y.; Ph.D. Thesis; Kanagawa University: Japan, 2013.
  • 25 Goswami A, Ito T, Okamoto S. Adv. Synth. Catal. 2007; 349: 2368
  • 26 Sugiyama Y, Kariwa T, Sakurada T, Okamoto S. Synlett 2012; 23: 2549
    • 27a Kase K, Goswami A, Ohtaki K, Tanabe E, Saino N, Okamoto S. Org. Lett. 2007; 9: 931
    • 27b Sugiyama Y, Okamoto S. Synthesis 2011; 2247

      For related intramolecular reactions catalyzed by CoI2(dppe)–Zn, see:
    • 28a Chang H.-T, Jeganmohan M, Cheng C.-H. Org. Lett. 2007; 9: 505

    • For recent reports on iron-based instant catalysts, see:
    • 28b D’Souza BR, Lane TK, Louie J. Org. Lett. 2011; 13: 2936
    • 28c Wang C, Li X, Wu F, Wan B. Angew. Chem. Int. Ed. 2011; 50: 7162
  • 29 Okamoto S. Heterocycles 2012; 85: 1579

    • For reviews, see :
    • 30a Inglesby PA, Evans PA. Chem. Soc. Rev. 2010; 39: 2791
    • 30b Shaaban MR, El-Sayed R, Elwahy AH. M. Tetrahedron 2011; 67: 6095
    • 30c Domínguez G, Pérez-Castells J. Chem. Soc. Rev. 2011; 40: 3430
    • 30d Broere DL. J, Ruijter E. Synthesis 2012; 44: 2639

    • For recent examples, see:
    • 30e Radha BholaB, Bally T, Valente A, Cyranski MK. Angew. Chem. Int. Ed. 2010; 49: 399
    • 30f Elwahy AH. M, Hafner K. Eur. J. Org. Chem. 2010; 265
    • 30g Opekar S, Turek P, Pohl R, Klepetárová B, Vortruba I, Hocek M, Kotora M. Heterocycles 2010; 82: 895
    • 30h Welsch T, Tran H.-A, Witulski B. Org. Lett. 2010; 12: 5644
    • 30i Konno T, Moriyasu K, Kinugawa R, Ishihara T. Org. Biomol. Chem. 2010; 8: 1718
    • 30j Nicolaus N, Schmalz H.-G. Synlett 2010; 2071
    • 30k Suryawanshi SB, Dushing MP, Gonnade RG, Ramana CV. Tetrahedron 2010; 66: 6085
    • 30l Iannazzo L, Vollhardt KP. C, Malacria M, Aubert C, Gandon V. Eur. J. Org. Chem. 2011; 3283
    • 30m Yanney M, Fronczek FR, Henry WP, Beard DJ, Sygula A. Eur. J. Org. Chem. 2011; 6636
    • 30n Zou Y, Liu Q, Deiters A. Org. Lett. 2011; 13: 4352
    • 30o Kawatsura M, Yamamoto M, Namioka J, Kajita K, Hiraoka T, Itoh T. Org. Lett. 2011; 13: 1001
    • 30p Dushing MP, Ramana CV. Tetrahedron Lett. 2011; 52: 4627
    • 30q Ramana CV, Dushing MP, Mohapatra S, Mallik R, Gonnade RG. Tetrahedron Lett. 2011; 52: 38
    • 30r Melnes S, Bayer A, Gautun OR. Tetrahedron 2012; 68: 8463
  • 31 Zhang G, Yang G, Wang S, Chen Q, Ma JS. Chem. Eur. J. 2007; 13: 3630 ; and references cited therein
    • 32a Bradsher CK. Chem. Rev. 1946; 38: 447
    • 32b Miller JB. J. Org. Chem. 1966; 31: 4082
    • 32c Guyot A, Catel J. Bull. Soc. Chim. Fr. 1906; 35: 1121
    • 32d Guyot A, Catel J. Bull. Soc. Chim. Fr. 1906; 35: 567
    • 32e Li G, Zhou S, Su G, Liu Y, Wang PG. J. Org. Chem. 2007; 72: 9830
  • 33 Saino N, Kawaji T, Ito T, Matsushita Y, Okamoto S. Tetrahedron Lett. 2010; 51: 1313
    • 35a Grosshenny V, Harriman A, Ziessel R. Angew. Chem., Int. Ed. Engl. 1995; 34: 2705
    • 35b Belser P, Dux R, Baak M, De Cola L, Balzani V. Angew. Chem., Int. Ed. Engl. 1995; 34: 595
    • 35c Dhenaut C, Ledoux I, Samuel ID. W, Zyss J, Bourgault M, Le Bozec H. Nature 1995; 374: 339
    • 35d Eichen Y, Lehn J.-M, Scherl M, Haarer D, Fischer J, DeCian A, Corval A, Trommsdorff HP. Angew. Chem., Int. Ed. Engl. 1995; 34: 2530
    • 35e Kaes C, Katz A, Hosseini MW. Chem. Rev. 2000; 100: 3553
    • 35f Cordaro JG, McCusker JK, Bergman RG. Chem. Commun. 2002; 1496 ; and references cited therein
  • 36 Goswami A, Ohtaki K, Kase K, Ito T, Okamoto S. Adv. Synth. Catal. 2008; 350: 143
  • 37 Watanabe J, Sugiyama Y, Nomura A, Azumatei S, Goswami A, Saino N, Okamoto S. Macromolecules 2010; 43: 2213
    • 38a Li Z, Lam JW. Y, Dong Y, Dong Y, Sung HH. Y, Williams ID, Tang BZ. Macromolecules 2006; 39: 6458
    • 38b Häussler M, Liu J, Zheng R, Lam JW. Y, Qin A, Tang BZ. Macromolecules 2007; 40: 1914
    • 38c Jim CK. W, Qin A, Lam JW. Y, Häussler M, Liu J, Yuen MM. F, Kim JK, Ng KM, Tang BZ. Macromolecules 2009; 42: 4099
    • 38d Hu R, Lam JW. Y, Liu J, Sung HH. Y, Williams ID, Yue Z, Wong KS, Yuen MM. F, Tang BZ. Polym. Chem. 2012; 3: 1481
  • 39 Hecht S, Fréchet JM. J. J. Am. Chem. Soc. 1999; 121: 4084
  • 40 Sugiyama Y, Kato R, Sakurada T, Okamoto S. J. Am. Chem. Soc. 2011; 133: 9712
    • 41a Wu R, Al-Azemi TF, Bisht KS. Macromolecules 2009; 42: 2401
    • 41b Aoi K, Miyamoto M, Chujo Y, Saegusa T. Macromol. Symp. 2002; 183: 53
    • 41c Shibasaki Y, Sanada H, Yokoi M, Sanda F, Endo T. Macromolecules 2000; 33: 4316
    • 41d Haucourt NH, Peng L, Goethals EJ. Macromolecules 1994; 27: 1329
    • 41e Ariga T, Takata T, Endo T. Macromolecules 1993; 26: 7106
  • 42 Sugiyama Y, Okamoto S manuscript in preparation.
  • 43 Wilke G. Pure Appl. Chem. 1978; 50: 677
  • 44 Wender PA, Christy JP. J. Am. Chem. Soc. 2007; 129: 13402
  • 45 Goswami A, Ito T, Saino N, Kase K, Matsuno C, Okamoto S. Chem. Commun. 2009; 439
  • 46 Sakurada T, Sugiyama Y, Okamoto S. J. Org. Chem. 2013; 78: 3583