Synthesis 2012; 44(17): 2639-2672
DOI: 10.1055/s-0032-1316757
review
© Georg Thieme Verlag Stuttgart · New York

Recent Advances in Transition-Metal-Catalyzed [2+2+2]-Cyclo(co)trimerization Reactions

Daniël L. J. Broere
Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), VU University Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam, The Netherlands, Fax: +31(20)5987488   Email: e.ruijter@vu.nl
,
Eelco Ruijter*
Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), VU University Amsterdam, de Boelelaan 1083, 1081 HV Amsterdam, The Netherlands, Fax: +31(20)5987488   Email: e.ruijter@vu.nl
› Author Affiliations
Further Information

Publication History

Received: 18 April 2012

Accepted after revision: 24 May 2012

Publication Date:
09 August 2012 (online)


Abstract

Transition-metal-catalyzed [2+2+2] cyclo(co)trimerization reactions are a powerful methodology to synthesize various complex multi-substituted (poly)cyclic molecules in a single step with optimal atom efficiency. Ever since the discovery, the reaction has been plagued by issues concerning regio- and chemoselectivity. Over the last decades many advances have been made to overcome these issues by, for example, employing regio-directing groups or tethering the reaction partners together in an intramolecular approach. These solutions, however, have certain limitations. Nowadays, it is also possible to synthesize chiral molecules by performing an asymmetric transition-metal-catalyzed [2+2+2]-cyclo(co)trimerization reaction. This review focuses on the recent advances in mechanistic insight, solving the regioselectivity issue, synthesis of chiral molecules and alternative approaches for the synthesis of substituted benzenes, pyridines and 2-pyridones. In addition, recent applications in areas such as total synthesis of natural products are also described, demonstrating that the transition-metal-catalyzed [2+2+2]-cyclo(co)trimerization reaction is a powerful tool and a welcome addition to the chemist’s ‘synthetic toolbox’.

1 Introduction

2 Synthesis of Benzene Derivatives

2.1 Mechanistic Insight

2.2 Regioselectivity

2.3 Synthesis of Chiral Systems

2.4 Other [2+2+2] Approaches

2.5 Synthesis of (Iso)quinolines

3 Synthesis of Pyridine Derivatives

3.1 Mechanistic Insight

3.2 Regioselectivity

3.3 Synthesis of Chiral Systems

4 Synthesis of Pyridone Derivatives

4.1 Mechanistic Insight

4.2 Regioselectivity

4.3 Synthesis of Chiral Systems

5 Applications

6 Future Directions

7 Conclusion

 
  • References

  • 1 Bertholet PE. M. C. R. Hebd. Seances Acad. Sci. 1866; 63: 515
  • 2 Kotha S, Brahmachary E, Lahiri K. Eur. J. Org. Chem. 2005; 4741
  • 3 Reppe W, Schweckendiek WJ. Justus Liebigs Ann. Chem. 1948; 560: 104
    • 4a Saito S, Yamamoto Y. Chem. Rev. 2000; 100: 2901
    • 4b Yamamoto Y. Curr. Org. Chem. 2005; 9: 503
    • 4c Zhou L, Li S, Kanno K, Takahashi T. Heterocycles 2010; 80: 725
    • 4d Shibata K, Tanaka K. Synthesis 2012; 44: 323
    • 5a Heller B, Hapke M. Chem. Soc. Rev. 2007; 36: 1085
    • 5b Varela JA, Saá C. Chem. Rev. 2003; 103: 3787
    • 5c Varela JA, Saá C. Synlett 2008; 2571
  • 6 Perreault S, Rovis T. Chem. Soc. Rev. 2009; 38: 3149
  • 7 Chopade PR, Louie J. Adv. Synth. Catal. 2006; 348: 2307
    • 8a This tutorial review focuses on stereoselectivity in higher-order carbocyclization reactions: Inglesby PA, Evans PA. Chem. Soc. Rev. 2010; 39: 2791
    • 8b This highlight focuses on the most recent advances in solving the chemoselectivity: Galan BR, Rovis T. Angew. Chem. Int. Ed. 2009; 48: 2830
    • 9a Shibata T, Tsuchikama K. Org. Biomol. Chem. 2008; 6: 1317
    • 9b Tanaka K. Chem.–Asian J. 2009; 4: 508
  • 10 While this review was in preparation, Tanaka published a review (ref. 3d) which contained some overlap with the original manuscript. Non-essential examples also described by Tanaka were therefore removed from this review.
  • 11 Schore NE. Chem. Rev. 1988; 88: 1081
  • 12 Varela JA, Saá C. J. Organomet. Chem. 2009; 694: 143
  • 13 Orian L, van Stralen JN. P, Bickelhaupt FM. Organometallics 2007; 26: 3816
  • 14 Dachs A, Osuna S, Roglans A, Solà M. Organometallics 2010; 29: 562
  • 15 Dachs A, Torrent A, Roglans A, Parella T, Osuna S, Solà M. Chem.–Eur. J. 2009; 15: 5289
  • 16 Dachs A, Torrent A, Pla-Quintana A, Roglans A, Jutand A. Organometallics 2009; 28: 6036
  • 17 For an example: Takahashi T, Xi Z, Yamazaki A, Liu Y, Nakajima K, Kotora M. J. Am. Chem. Soc. 1998; 120: 1672
    • 18a Yamamoto Y, Ishii J, Nishiyama H, Itoh K. J. Am. Chem. Soc. 2004; 126: 3712
    • 18b Yamamoto Y, Ishii J, Nishiyama H, Itoh K. J. Am. Chem. Soc. 2005; 127: 9625
  • 19 Stockis A, Hoffmann R. J. Am. Chem. Soc. 1980; 102: 2952
  • 20 Wakatsuki Y, Nomura O, Kitaura K, Morokuma K, Yamazaki H. J. Am. Chem. Soc. 1983; 105: 1907
  • 21 Hill JE, Balaich G, Fanwick PE, Rothwell IP. Organometallics 1993; 12: 2911
  • 22 Takeuchi R, Nakaya Y. Org. Lett. 2003; 5: 3659
  • 23 Hilt G, Hengst C, Hess W. Eur. J. Org. Chem. 2008; 2293
  • 24 Deng L, Chan HS, Xie Z. J. Am. Chem. Soc. 2005; 127: 13774
  • 25 Qiu Z, Wang SR, Xie Z. Angew. Chem. Int. Ed. 2010; 49: 4649
  • 26 Romero C, Peña D, Pérez D, Guitián E. J. Org. Chem. 2008; 73: 7996
  • 27 Sripada L, Teske JA, Deiters A. Org. Biomol. Chem. 2008; 6: 263
  • 28 Young DD, Deiters A. Angew. Chem. Int. Ed. 2007; 46: 5187
  • 29 Konno T, Moriyasu K, Kinugawa R, Ishihara T. Org. Biomol. Chem. 2010; 8: 1718
  • 30 Nishida G, Ogaki S, Yusa Y, Yokozawa T, Noguchi K, Tanaka K. Org. Lett. 2008; 10: 2849
  • 31 Doherty S, Smyth CH, Harrington RW, Clegg W. Organometallics 2008; 27: 4837
  • 32 Suda T, Noguchi K, Hirano M, Tanaka K. Chem.–Eur. J. 2008; 14: 6593
  • 33 Oppenheimer J, Johnson WL, Figueroa R, Hayashi R, Hsung RP. Tetrahedron 2009; 65: 5001
  • 34 Tanaka K, Fukawa N, Suda T, Noguchi K. Angew. Chem. Int. Ed. 2009; 48: 5470
  • 35 Fukawa N, Osaka T, Noguchi K, Tanaka K. Org. Lett. 2010; 12: 1324
  • 36 For a recent example see: Tamura K, Sugiya M, Yoshida K, Yanagisawa A, Imamoto T. Org. Lett. 2010; 12: 4400
  • 37 Nishida G, Noguchi K, Hirano M, Tanaka K. Angew. Chem. Int. Ed. 2008; 47: 3410
  • 38 Imamoto T, Saitoh Y, Koide A, Ogura T, Yoshida K. Angew. Chem. Int. Ed. 2007; 46: 8636
  • 39 Shibata T, Uchiyama T, Endo K. Org. Lett. 2009; 11: 3906
  • 40 Hara H, Hirano M, Tanaka K. Org. Lett. 2008; 10: 2537
  • 41 Komine Y, Kamisawa A, Tanaka K. Org. Lett. 2009; 11: 2361
  • 42 Hara H, Hirano M, Tanaka K. Org. Lett. 2009; 11: 1337
  • 43 Zhang K, Louie J. J. Org. Chem. 2011; 76: 4686
  • 44 Tsuji H, Yamagata K.-i, Fujimoto T, Nakamura E. J. Am. Chem. Soc. 2008; 130: 7792
  • 45 Kuninobu Y, Nishi M, Yudha SS, Takai K. Org. Lett. 2008; 10: 3009
  • 46 For an example see: Nakamura M, Endo K, Nakamura E. J. Am. Chem. Soc. 2003; 125: 13002
  • 47 Yoshikai N, Zhang S-L, Yamagata K.-i, Tsuji H, Nakamura E. J. Am. Chem. Soc. 2009; 131: 4099
  • 48 Kuninobu Y, Nishi M, Kawata A, Takata H, Hanatani Y, Yudha SS, Iwai A, Takai K. J. Org. Chem. 2010; 75: 334
  • 49 Iwayama T, Sato Y. Chem. Commun. 2009; 5245
  • 50 Iwayama T, Sato Y. Heterocycles 2010; 80: 917
  • 51 Čížková M, Kolivoška V, Císařová I, Šaman D, Pospíšil L, Teplý F. Org. Biomol. Chem. 2011; 9: 450
  • 52 Rosiana GR, Lee JW, Ding L, Yoon H, Chang Y. J. Am. Chem. Soc. 2003; 125: 1130
  • 53 Dazinger G, Torres-Rodrigues M, Kirchner K, Calhorda MJ, Costa PJ. J. Organomet. Chem. 2006; 691: 4434
  • 54 Yamamoto Y, Kinpara K, Saigoku T, Takagishi H, Okuda S, Nishiyama H, Itoh K. J. Am. Chem. Soc. 2005; 127: 605
  • 55 Dahy AA, Koga N. J. Organomet. Chem. 2010; 695: 2240
  • 56 Miclo Y, Garcia P, Evanno Y, George P, Sevrin M, Malacria M, Gandon V, Aubert C. Synlett 2010; 2314
  • 57 Garcia L, Pla-Quintana A, Roglans A, Parella T. Eur. J. Org. Chem. 2010; 3407
  • 58 Garcia P, Moulin S, Miclo S, Leboeuf D, Gandon V, Aubert C, Malacria M. Chem.–Eur. J. 2009; 15: 2129
  • 59 Diversi P, Ermini L, Ingrosso G, Lucherini A. J. Organomet. Chem. 1993; 447: 291
  • 60 Yamamoto Y, Kinpara K, Ogawa R, Nishiyama H, Itoh K. Chem.–Eur. J. 2006; 12: 5618
  • 61 Varela JA, Castedo L, Maestro M, Mahía J, Saá C. Chem.–Eur. J. 2001; 7: 5203
  • 62 Saá C, Crotts DD, Hsu G, Vollhardt KP. C. Synlett 1994; 487
  • 63 Gray BL, Wang X, Brown WC, Kuai L, Schreiber SL. Org. Lett. 2008; 10: 2621
  • 64 Dush MK, McIver AL, Parr MA, Young DD, Fisher J, Newman DR, Sannes PL, Hauck ML, Deiters A, Nascone-Yoder N. Chem. Biol. 2011; 18: 252
  • 65 Komine Y, Tanaka K. Org. Lett. 2010; 12: 1312
  • 66 Turek P, Hocek M, Pohl R, Klepetářová B, Kotora M. Eur. J. Org. Chem. 2008; 3335
  • 67 Goswami A, Ohtaki K, Kase K, Ito T, Okamoto S. Adv. Synth. Catal. 2008; 350: 143
  • 68 Cover picture: Gutnov A, Heller B, Fischer C, Drexler H.-J, Spannenberg A, Sundermann B, Sundermann C. Angew. Chem. 2004; 116: 3825 ; Angew. Chem. Int. Ed. 2004, 43, 3739
  • 69 Gutnov A, Heller B, Fischer C, Drexler H.-J, Spannenberg A, Sundermann B, Sundermann C. Angew. Chem. 2004; 116: 3883 ; Angew. Chem. Int. Ed. 2004, 43, 3795
  • 70 Hapke M, Kral K, Fischer C, Spannenberg A, Gutnov A, Redkin D, Heller B. J. Org. Chem. 2010; 75: 3993
  • 71 Nishida G, Suzuki N, Koguchie K, Tanaka K. Org. Lett. 2006; 8: 3489
  • 72 Wada A, Noguchi K, Hirano M, Tanaka K. Org. Lett. 2007; 9: 1295

    • For some recent examples:
    • 73a Kotora M. Pure Appl. Chem. 2010; 82: 1813
    • 73b Kadlčíková A, Hrdina R, Valterová I, Kotora M. Adv. Synth. Catal. 2009; 351: 1279
    • 74a Yu RT, Rovis T. J. Am. Chem. Soc. 2006; 128: 2782
    • 74b Yu RT, Rovis T. J. Am. Chem. Soc. 2006; 128: 12370
    • 74c Lee EE, Rovis T. Org. Lett. 2008; 10: 1231
    • 74d Yu RT, Rovis T. J. Am. Chem. Soc. 2008; 130: 326
    • 74e Yu RT, Lee EE, Malik G, Rovis T. Angew. Chem. Int. Ed. 2009; 48: 2379
    • 74f Keller Friedman R, Rovis T. J. Am. Chem. Soc. 2009; 131: 10775
    • 74g Dalton DM, Oberg KM, Yu RT, Lee EE, Perreault S, Oinen ME, Pease ML, Malik G, Rovis T. J. Am. Chem. Soc. 2009; 131: 15717
    • 75a Schmid R, Kirchner K. J. Org. Chem. 2003; 68: 8339
    • 75b Dazinger G, Schmid R, Kirchner K. New J. Chem. 2004; 28: 153
  • 76 Oberg KM, Lee EE, Rovis T. Tetrahedron 2009; 65: 5056
  • 77 Takahashi T, Tsai F, Li Y, Wang H, Kondo Y, Yamanaka M, Nakajima K, Kotora M. J. Am. Chem. Soc. 2002; 124: 5059
  • 78 Boñoga LV. R, Zhang H.-C, Moretto AF, Ye H, Gauthier DA, Li J, Leo GC, Maryanoff BE. J. Am. Chem. Soc. 2005; 127: 3473
  • 79 Tanaka K, Wada A, Noguchi K. Org. Lett. 2005; 7: 4737
  • 80 Tanaka K, Takahashi Y, Suda T, Hirano M. Synlett 2008; 1724
  • 81 Earl RA, Vollhardt KP. C. J. Org. Chem. 1984; 49: 4786
  • 82 Eichberg MJ, Dorta RL, Grotjahn DB, Lamottke K, Schmidt M, Vollhardt KP. C. J. Am. Chem. Soc. 2001; 123: 9324
  • 83 Yuan C, Chang C, Axelrod A, Siegel D. J. Am. Chem. Soc. 2010; 132: 5924
  • 84 Snyder SA. Nature 2010; 465: 560
  • 85 Davey S. Nature Chem. 2010; 2: 515
  • 86 Dassonneville B, Witulski B, Detert H. Eur. J. Org. Chem. 2011; 2836
  • 87 Nissen F, Detert H. Eur. J. Org. Chem. 2011; 2845
  • 88 Ramana CV, Salian SR, Gonnade RG. Eur. J. Org. Chem. 2007; 5483
    • 89a Nicolaou KC, Tang Y, Wang J. Angew. Chem. Int. Ed. 2009; 48: 3449
    • 89b The reported synthesis has also been the subject of a highlight: Li P, Menche D. Angew. Chem. Int. Ed. 2009; 48: 5078
  • 90 Nicolaou KC, Wang J, Tang Y, Botta L. J. Am. Chem. Soc. 2010; 132: 11350
  • 91 Levin S, Nani RR, Reisman SE. Org. Lett. 2010; 12: 780
  • 92 Kesenheimer C, Kalogerakis A, Meißner A, Groth U. Chem.–Eur. J. 2010; 16: 8805
  • 93 Bugaut X, Guinchard X, Roulland E. J. Org. Chem. 2010; 75: 8190
  • 94 Mizojiri R, Conroy R, Daiss J, Kotani E, Tacke R, Miller D, Walsh L, Kawamoto T. Tetrahedron 2010; 66: 7738
  • 95 For an example of another ‘large-scale’ transition-metal-catalyzed [2+2+2]-cyclotrimerization reaction, see ref. 30.
  • 96 Zou Y, Deiters A. J. Org. Chem. 2010; 75: 5355
  • 97 McIver A, Young DD, Deiters A. Chem. Commun. 2008; 4750
  • 98 Zou Y, Young DD, Cruz-Montanez A, Deiters A. Org. Lett. 2008; 10: 4661
  • 99 Dallinger D, Irfan M, Suljanovic A, Kappe CO. J. Org. Chem. 2010; 75: 5278
  • 100 Ngoc DT, Albicker M, Schneider L, Cramer N. Org. Biomol. Chem. 2010; 8: 1781
  • 101 Garcia L, Pla-Quintana A, Roglans A. Org. Biomol. Chem. 2009; 7: 5020
  • 102 Suryawanshi SB, Dushing MP, Gonnade RG, Ramana CV. Tetrahedron 2010; 66: 6085
  • 103 Watanabe J, Sugiyama Y, Nomura A, Azumatei S, Goswami A, Saino N, Okamoto S. Macromolecules 2010; 43: 2213
  • 104 Liu J, Zhang L, Lam JW. Y, Jim CK. W, Yue Y, Deng R, Hong Y, Qin A, Sung HH. Y, Williams ID, Jia G, Tang BZ. Macromolecules 2009; 42: 7367
  • 105 Wang Y.-H, Huang S.-H, Lin T.-C, Tsai F.-Y. Tetrahedron 2010; 66: 7136
  • 106 Shaughnessy KH. Chem. Rev. 2009; 109: 643
  • 107 Fang X, Sun J, Tong X. Chem. Commun. 2010; 46: 3800
  • 108 Bu X, Zhang Z, Zhou X. Organometallics 2010; 29: 3530
  • 109 Komeyama K, Kawabata T, Takehira K, Takaki K. J. Org. Chem. 2005; 70: 7260