Synlett 2012; 23(13): 1857-1864
DOI: 10.1055/s-0032-1316591
account
© Georg Thieme Verlag Stuttgart · New York

Stereocontrol Strategies in the Asymmetric Bioreduction of Alkenes

Gustav Oberdorfer
a   ACIB GmbH, c/o, Humboldstr. 50, 8010 Graz, Austria
b   Institute of Molecular Biosciences, Humboldstr. 50, 8010 Graz, Austria
,
Karl Gruber
b   Institute of Molecular Biosciences, Humboldstr. 50, 8010 Graz, Austria
,
Kurt Faber*
c   Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstr. 28, 8010 Graz, Austria, Fax: +43(316)3809840   Email: Kurt.Faber@Uni-Graz.at   Email: Melanie.Hall@Uni-Graz.at
,
Mélanie Hall*
c   Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstr. 28, 8010 Graz, Austria, Fax: +43(316)3809840   Email: Kurt.Faber@Uni-Graz.at   Email: Melanie.Hall@Uni-Graz.at
› Author Affiliations
Further Information

Publication History

Received: 03 May 2012

Accepted (after revision): 08 June 2012

Publication Date:
17 July 2012 (online)


Abstract

The asymmetric bioreduction of prochiral conjugated alkenes using ene-reductases allows powerful strategies to access both enantiomers of the product with high stereoselectivity. This may be achieved (i) by using pairs of (iso)enzymes, which bind the alkene moiety in mirror-image orientations to affect hydride attack from opposite sides, (ii) via a switch in the (E/Z)-geometry of the alkene unit, or (iii) by changing the size of the protective groups of the substrate, which enforces a flipped orientation in the active site. Modeling studies provide a rationale for the molecular basis of substrate binding and allow the prediction of the stereochemical outcome of this useful bioreduction.

1 Introduction

2 Enzyme-Based Stereocontrol: ‘Enantiomeric’ Ene-reductases

3 Substrate-Based Stereocontrol: Flipping Substrates

3.1 Stereocontrol via (E/Z)-Configuration of Substrate

3.2 Stereocontrol via Substituent Effects

4 Modeling of Substrate Complexes

5 Conclusions

 
  • References

  • 1 Faber K. Biotransformations in Organic Chemistry . 6th ed. Springer; Heidelberg: 2011
  • 2 Mugford PF, Wagner UG, Jiang Y, Faber K, Kazlauskas RJ. Angew. Chem. Int. Ed. 2008; 47: 8782
    • 3a Derewenda ZS, Wei Y. J. Am. Chem. Soc. 1995; 117: 2104
    • 3b Kazlauskas RJ, Weissfloch AN. E. J. Mol. Catal. B: Enzym. 1997; 3: 65
    • 3c Mugford P, Wagner U, Jiang Y, Faber K, Kazlauskas RJ. Angew. Chem. Int. Ed. 2008; 47: 8782
    • 4a Dashipour M, Asano Y. ACS Catal. 2011; 1: 1121
    • 4b Purkarthofer T, Scranc W, Schuster C, Griengl H. Appl. Microbiol. Biotechnol. 2007; 76: 309
    • 4c Gruber K, Kratky C. J. Polym. Sci. A: Polym. Chem. 2004; 42: 479
    • 4d Gregory RJ. H. Chem. Rev. 1999; 99: 3649
    • 4e Griengl H, Schwab H, Fechter M. Trends Biotechnol. 2000; 18: 252
    • 5a Kallwass HK. W. Enzyme Microb. Technol. 1992; 14: 28
    • 5b Hummel W, Schütte H, Kula M.-R. Appl. Microbiol. Biotechnol. 1985; 21: 7
    • 5c Schütte H, Hummel W, Kula M.-R. Appl. Microbiol. Biotechnol. 1984; 19: 167
    • 6a Yennawar NH, Conway ME, Yennawar HP, Farber GK, Hutson SM. Biochemistry 2002; 41: 11592
    • 6b Davoodi J, Drown PM, Bledsoe RK, Wallin R, Reinhart GD, Hutson SM. J. Biol. Chem. 1998; 273: 4982
    • 7a Parales RE, Resnick SM, Yu C, Boyd DR, Sharma ND, Gibson DT. J. Bacteriol. 2000; 182: 5495
    • 7b Li Y, Aubert SD, Maes EG, Raushel FM. J. Am. Chem. Soc. 2004; 126: 8888
    • 7c Ozaki S.-I, Ortiz de Montellano PR. J. Am. Chem. Soc. 1994; 116: 4487
    • 7d Savenkova MI, Newmyer SL, Ortiz de Montellano PR. J. Biol. Chem. 1996; 271: 24598
    • 7e Bartsch S, Kourist R, Bornscheuer UT. Angew. Chem. Int. Ed. 2008; 47: 1508
    • 7f Terao Y, Ijima Y, Miyamoto K, Ohta H. J. Mol. Catal. B: Enzym. 2007; 45: 15
    • 8a Adachi K, Kobayashi S, Ohno M. Chimia 1986; 40: 311
    • 8b Winkler CK, Stueckler C, Mueller NJ, Pressnitz D, Faber K. Eur. J. Org. Chem. 2010; 6354
    • 8c Stueckler C, Winkler CK, Hall M, Hauer B, Bonnekessel M, Zangger K, Faber K. Adv. Synth. Catal. 2011; 353: 1169
    • 9a Chen C.-S, Sih CJ. Angew. Chem. 1989; 101: 711
    • 9b Faber K, Ottolina G, Riva S. Biocatalysis 1993; 8: 91
  • 10 Hall M, Bommarius AS. Chem. Rev. 2011; 111: 4088
  • 11 Toogood HS, Gardiner JM, Scrutton NS. ChemCatChem 2010; 2: 892
  • 12 Stuermer R, Hauer B, Hall M, Faber K. Curr. Opin. Chem. Biol. 2007; 11: 203
  • 13 Williams RE, Bruce NC. Microbiology 2002; 148: 1607
  • 14 Brown BJ, Deng Z, Karplus PA, Massey V. J. Biol. Chem. 1998; 273: 32753
  • 15 Kohli RM, Massey V. J. Biol. Chem. 1998; 273: 32763
  • 16 Ohta H, Kobayashi N, Ozaki K. J. Org. Chem. 1989; 54: 1802
  • 17 Warburg O, Christian W. Biochem. Z. 1932; 254: 438
  • 18 Winkler C. K., Tasnádi G., Clay D., Hall M., Faber K. J. Biotechnol. DOI: 10.1016/j.jbiotec.2012.03.023
  • 19 Hall M, Yanto Y, Bommarius AS. Enzymes, Enoate Reductases ’Old Yellow Enzyme’, In The Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology. John Wiley & Sons; Hoboken: 2010: 2234-2247
  • 20 Saito K, Thiele DJ, Davio M, Lockridge O, Massey V. J. Biol. Chem. 1991; 266: 20720
  • 21 Stott K, Saito K, Thiele DJ, Massey V. J. Biol. Chem. 1993; 268: 6097
  • 22 Fitzpatrick TB, Amrhein N, Macheroux P. J. Biol. Chem. 2003; 278: 19891
  • 23 Buckman J, Miller SM. Biochemistry (Mosc) 1998; 37: 14326
  • 24 Strassner J, Schaller F, Frick UB, Howe GA, Weiler EW, Amrhein N, Schaller A, Macheroux P. Plant J. 2002; 32: 585
  • 25 Breithaupt C, Kurzbauer R, Schaller F, Stintzi A, Schaller A, Huber R, Macheroux P, Clausen T. J. Mol. Biol. 2009; 392: 1266
  • 26 Breithaupt C, Kurzbauer R, Lilie H, Schaller A, Strassner J, Huber R, Macheroux P, Clausen T. Proc. Natl. Acad. Sci. USA 2006; 103: 14337
  • 27 The PyMOL Molecular Graphics System, Version 1.2r3pre, Schrödinger, LLC.
  • 28 Hall M, Stueckler C, Kroutil W, Macheroux P, Faber K. Angew. Chem. Int. Ed. 2007; 46: 3934
    • 29a Hall M, Stueckler C, Ehammer H, Pointner E, Oberdorfer G, Gruber K, Hauer B, Stuermer R, Kroutil W, Macheroux P, Faber K. Adv. Synth. Catal. 2008; 350: 411
    • 29b Oberdorfer G, Steinkellner G, Stückler C, Faber K, Gruber K. ChemCatChem 2011; 3: 1562
  • 30 Stueckler C, Hall M, Ehammer H, Pointner E, Kroutil W, Macheroux P, Faber K. Org. Lett. 2007; 9: 5409
  • 31 Mueller NJ, Stueckler C, Hauer B, Baudendistel N, Housden H, Bruce NC, Faber K. Adv. Synth. Catal. 2010; 352: 387
  • 32 Tasnádi G, Winkler CK, Clay D, Fabian WM. F, Hall M, Ditrich K, Faber K. Chem. Eur. J. 2012; DOI: 10.1002/chem.201200990
  • 33 Dabrowski J, Kamienska-Trela K, Sadlej AJ. J. Mol. Struct. 1972; 12: 185
  • 34 Terpinski J, Dabrowski J. J. Mol. Struct. 1969; 4: 285
  • 35 Winkler CK, Stueckler C, Mueller NJ, Pressnitz D, Faber K. Eur. J. Org. Chem. 2010; 6354
  • 36 Stueckler C, Winkler CK, Hall M, Hauer B, Bonnekessel M, Zangger K, Faber K. Adv. Synth. Catal. 2011; 353: 1169
    • 37a Jorgensen WL, Maxwell DS, Tirado-Rives J. J. Am. Chem. Soc. 1996; 118: 11225
    • 37b Jorgensen WL, Tirado-Rives J. J. Am. Chem. Soc. 1988; 110: 1657
  • 38 Wang J, Wang W, Kollman PA, Case DA. J. Mol. Graphics Modell. 2006; 25: 247
    • 39a Fiser A, Kinh Gian Do R, Sali A. Prot. Sci. 2000; 9: 1753
    • 39b Sali A, Blundell TL. J. Mol. Biol. 1993; 234: 779
  • 40 Kitzing K, Fitzpatrick TB, Wilken C, Sawa J, Bourenkov GP, Macheroux P, Clausen T. J. Biol. Chem. 2005; 280: 27904
    • 41a Krieger E, Darden T, Nabuurs SB, Finkelstein A, Vriend G. Proteins: Struct. Funct. Bioinf. 2004; 57: 678
    • 41b Krieger E, Koraimann G, Vriend G. Proteins: Struct. Funct. Genet. 2002; 47: 393