Synthesis 2012; 44(16): 2607-2613
DOI: 10.1055/s-0032-1316563
paper
© Georg Thieme Verlag Stuttgart · New York

Hydrothiolation and Intramolecular Cyclization Sequence for the Synthesis of 1,3-Oxathiine Frameworks

Yuta Nishina*
Research Core for Interdisciplinary Sciences, Okayama University, Tsushima, Kita-ku, Okayama 700-8530, Japan, Fax: +81(86)2518718   Email: nisina-y@cc.okayama-u.ac.jp
,
Junya Miyata
Research Core for Interdisciplinary Sciences, Okayama University, Tsushima, Kita-ku, Okayama 700-8530, Japan, Fax: +81(86)2518718   Email: nisina-y@cc.okayama-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 17 April 2012

Accepted after revision: 25 May 2012

Publication Date:
03 July 2012 (online)


Abstract

1,3-Oxathiine frameworks can be prepared via the sequential addition and intramolecular cyclization of thiosalicylic acid onto alkynes. A substituent on the alkyne and the presence of a palladium catalyst can allow product regioselectivity control. This strategy is applicable to the synthesis of heterocycles comprising sulfur and oxygen atoms, namely 3,1-benzoxathiines, without any unwanted byproduct.

Supporting Information

 
  • References


    • Recent reports on the construction of heterocycles with two different heteroatoms:
    • 1a Hu Z, Ye W, Zou H, Yu Y. Synth. Commun. 2010; 40: 222
    • 1b Bhadra S, Adak L, Samanta S, Islam AK. M. M, Mukherjee M, Ranu BC. J. Org. Chem. 2010; 75: 8533
    • 1c Guo DL, Huang H, Zhou Y, Xu J, Jiang H, Chen K, Liu H. Green Chem. 2010; 12: 276
    • 1d Liu X, Fu H, Jiang Y, Zhao Y. Angew. Chem. Int. Ed. 2009; 48: 348
    • 1e Dahl T, Tornøe CW, Bang-Anderson B, Nielsen P, Jørgensen M. Angew. Chem. Int. Ed. 2008; 47: 1726
    • 1f Viña D, del Olmo E, López-Pérez JL, Feliciano AS. Org. Lett. 2007; 9: 525

      Double hydroamination of alkynol with platinum and gold catalyst has been developed:
    • 2a Patil NT, Kavthe RD, Raut VS, Shinde VS, Sridhar B. J. Org. Chem. 2010; 75: 1277
    • 2b Patil NT, Lakshmi PG. V. V, Singh V. Eur. J. Org. Chem. 2010; 4719
    • 3a Lee AV, Schafer LL. Organometallics 2006; 25: 5249
    • 3b Tillack A, Khedkar V, Jiao H, Beller M. Eur. J. Org. Chem. 2005; 5001
    • 3c Tan ST, Fan WY. Eur. J. Inorg. Chem. 2010; 4631
    • 3d Ohmiya H, Yorimitsu H, Oshima K. Angew. Chem. Int. Ed. 2005; 44: 2368
    • 3e Takaki K, Takeda M, Koshoji G, Shishido T, Takehira K. Tetrahedron Lett. 2001; 42: 6357
    • 4a Ogawa A, Ikeda T, Kimura K, Hirao T. J. Am. Chem. Soc. 1999; 121: 5108
    • 4b Kuniyasu H, Ogawa A, Sato KI, Ryu I, Kambe N, Sonoda N. J. Am. Chem. Soc. 1992; 114: 5902
    • 4c Kondo T, Mitsudo T. Chem. Rev. 2000; 100: 3205
    • 4d Weiss CJ, Wobser SD, Marks TJ. Organometallics 2010; 29: 6308
    • 4e Weiss CJ, Marks TJ. J. Am. Chem. Soc. 2010; 132: 10533
    • 5a Utsunomiya M, Kawatsura M, Hartwig JF. Angew. Chem. Int. Ed. 2003; 42: 5865
    • 5b Nicolai S, Erard S, González DF, Waser J. Org. Lett. 2010; 12: 384
    • 5c Oe Y, Ohta T, Ito Y. Tetrahedron Lett. 2010; 51: 2806
    • 5d Chaminade X, Coulombel L, Olivero S, Dunach E. Eur. J. Org. Chem. 2006; 3554
    • 5e Yang CG, Reich NW, Shi Z, He C. Org. Lett. 2005; 7: 4553

      Recent works on sequential transformations:
    • 6a Attanasi OA, De Crescentini L, Favi G, Nicolini S, Perrulli FR, Santeusanio S. Org. Lett. 2011; 13: 353
    • 6b Hong BC, Dange NS, Hsu CS, Liao JH, Lee GH. Org. Lett. 2011; 13: 1338
    • 6c Cao J, Yang X, Hua X, Deng Y, Lai G. Org. Lett. 2011; 13: 478
    • 6d Wu J, Becerril J, Lian Y, Davies HM. L, Porco JA, Panek JS. Angew. Chem. Int. Ed. 2011; 50: 5938
    • 6e Cao J, Huang X. Org. Lett. 2010; 12: 5048
  • 7 Conversion of 1a is more than 80%; we detected isomers of 3a and a dimer of 1a by GC-MS
  • 8 In the Pd(OAc)2 catalyzed reaction, various solvents were investigated; DMSO, 0%; EtOH, 9%, DMF, 27%; 1,4-dioxane, 60%; 1,2-dichloroethane, 90%; hexane, 88%
  • 9 Palladium-catalyzed selective hydrothiolation has been reported; see ref. 4a

    • For reports on transformations with similar substrates, see:
    • 10a Volkov AN, Volkova KA. Zh. Org. Khim. 1989; 25: 33
    • 10b Greengrass CW, Hughman JA, Parsons PJ. J. Chem. Soc., Chem. Commun. 1985; 889
  • 11 Nickel-catalyzed reaction: Ananikov VP, Malyshev DA, Beletskaya IP, Aleksandrov GG, Eremenko IL. Adv. Synth. Catal. 2005; 347: 1993
  • 12 Water-mediated reaction: Nair VA, Randive NA, Kumar V. Monatsh. Chem. 2010; 141: 1329
  • 13 Ackermann L, Pospech J. Org. Lett. 2011; 13: 4153
  • 14 When the reactions were stopped after 1 h, 4j and 4k were obtained in 48% and 69% yields, respectively
  • 15 Even in the presence of the palladium catalyst, a product with a structure like 3 was not observed
  • 16 We also obtained the intermediate. If the reaction is stopped before the addition of the palladium catalyst, the activated alkyne moiety is selectively functionalized to give 1,3-oxathiine 4n′ in 83% yield (Figure 2)
  • 17 We chose 2g to isolate a vinyl sulfide intermediate, since intramolecular cyclization of 5b was slow. Other alkynes also gave the corresponding vinyl sulfides, but with a low yield
  • 18 The trans-vinyl sulfides 5c′ (see Supporting Information) were also transformed into 4j under the same reaction conditions of Equation 2
  • 19 In this case, AIBN did not work as an appropriate promoter; 4j was obtained in 52% yield and unknown mixture of products was observed