Synthesis 2012; 44(15): 2310-2324
DOI: 10.1055/s-0032-1316544
short review
© Georg Thieme Verlag Stuttgart · New York

The Evans–Tishchenko Reaction: Scope and Applications

Kevin J. Ralston
EaStCHEM, School of Chemistry, Joseph Black Building, Kings Buildings, West Mains Road, Edinburgh, EH9 3JJ, UK, Fax: +44(131)6504743   Email: Alison.Hulme@ed.ac.uk
,
Alison N. Hulme*
EaStCHEM, School of Chemistry, Joseph Black Building, Kings Buildings, West Mains Road, Edinburgh, EH9 3JJ, UK, Fax: +44(131)6504743   Email: Alison.Hulme@ed.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 26 March 2012

Accepted after revision: 18 May 2012

Publication Date:
29 June 2012 (online)


Abstract

The Evans–Tishchenko reaction provides a highly diastereoselective route towards the synthesis of 1,3-anti diol monoesters, and therefore has found prominent use in a number of synthetic applications. This review summarises recent applications of the Evans­–Tishchenko reaction in natural product synthesis, and examines scope in terms of substrate range, functional group tolerance, and catalyst.

1 Introduction

2 Reaction Mechanism and Catalyst Scope

2.1 Reaction Mechanism

2.2 Samarium

2.3 Scandium

2.4 Zirconium

2.5 Other Metals

3 Substrate Scope

4 Application in Natural Product Synthesis

4.1 Protection/Asymmetric Induction

4.2 Functional Group Interconversion

4.3 Fragment Linkage and Ring Formation

5 Future Perspectives

6 Conclusion

 
  • References

    • 1a Tishchenko V. J. Russ. Phys. Chem. Soc. 1906; 38: 355
    • 1b Tishchenko V. J. Russ. Phys. Chem. Soc. 1906; 38: 482
    • 1c Tishchenko V. J. Russ. Phys. Chem. Soc. 1906; 38: 540
    • 1d Tishchenko V. J. Russ. Phys. Chem. Soc. 1906; 38: 547
  • 2 Evans DA, Hoveyda AH. J. Am. Chem. Soc. 1990; 112: 6447

    • The following reviews discuss the Tishchenko reaction in the synthesis of esters:
    • 3a Törmäkangas OP, Koskinen AM. P In Recent Research Developments in Organic Chemistry . Vol. 5. Pandalai SG. Transworld Research Network; Trivandrum: 2001: 225
    • 3b Seki T, Nakajo T, Onaka M. Chem. Lett. 2006; 35: 824
  • 4 The following review provides good coverage of the aldol–Tishchenko reaction: Mahrwald R. Curr. Org. Chem. 2003; 7: 1713
  • 5 Ichibakase T, Nakatsu M, Nakajima M. Molecules 2011; 16: 5008
  • 6 An explanatory example of transesterification process in the related aldol–Tishchenko reaction can be found here: Reutrakul V, Jaratjaroonphong J, Tuchinda P, Kuhakarn C, Kongsaeree P, Prabpai S, Pohmakotr M. Tetrahedron Lett. 2006; 47: 4753
    • 7a Schneider C, Klapa K, Hansch M. Synlett 2005; 91
    • 7b Schneider C, Hansch M, Weide T. Chem.–Eur. J. 2005; 11: 3010
    • 7c Raghavan S, Samanta PK. Org. Lett. 2012; 14: 2346
  • 8 Dorgan PD, Durrani J, Cases-Thomas MJ, Hulme AN. J. Org. Chem. 2010; 75: 7475
  • 10 Imamoto T, Ono M. Chem. Lett. 1987; 501
  • 11 Teprovic JA. Jr, Sudhadevi Antharjanam PK, Prasad E, Pesciotta EN, Flowers RA. Eur. J. Inorg. Chem. 2008; 5015
  • 12 Dahlén A, Hilmersson G. Eur. J. Inorg. Chem. 2004; 3020

    • The following reviews cover a number of alternative uses of SmI2 in organic synthesis:
    • 13a Molander GA, Harris CR. Chem. Rev. 1996; 96: 307
    • 13b Kagan HB. Tetrahedron 2003; 59: 10351
    • 13c Nicolaou KC, Ellery SP, Chen JS. Angew. Chem. Int. Ed. 2009; 48: 7140
  • 14 Molander GA, Kenny C. J. Org. Chem. 1991; 56: 1439
  • 15 Concellón JM, Rodríguez-Solla H, Bardales E, Huerta M. Eur. J. Org. Chem. 2003; 1775
  • 16 Girard P, Namy JL, Kagan HB. J. Am. Chem. Soc. 1980; 102: 2693
  • 17 Akane N, Kanagawa Y, Nishiyama Y, Ishii Y. Chem. Lett. 1992; 2431
  • 18 For a review of the use of Sc(OTf)3 in organic synthesis see: Kobayashi S. Eur. J. Org. Chem. 1999; 15
  • 19 Gillespie KM, Munslow IJ, Scott P. Tetrahedron Lett. 1999; 40: 9371
  • 20 Umekawa Y, Sakaguchi S, Nishiyama Y, Ishii Y. J. Org. Chem. 1997; 62: 3409
  • 21 Mascarenhas CM, Miller SP, White PS, Morken JP. Angew. Chem. Int. Ed. 2001; 40: 601
  • 22 Feutrill JT, Lilly MJ, Rizzacasa MA. Org. Lett. 2000; 2: 3365
  • 23 Smith AB, Lee D, Adams CM, Kozlowski MC. Org. Lett. 2002; 4: 4539

    • The thioacetal moiety is sensitive to a number of common oxidizing agents, for example Dess–Martin periodinane:
    • 24a Langille NF, Dakin LA, Panek JS. Org. Lett. 2003; 5: 575
    • 24b Hydrogen peroxide: Ganguly NC, Barik SK. Synthesis 2009; 1393
    • 24c See also: Ganguly NC, Mondal P. Synth. Commun. 2011; 41: 2374
    • 24d IBX: Krishnaveni NS, Surendra K, Nageswar YV. D, Rao KR. Synthesis 2003; 2295
    • 24e See also: Nicolaou KC, Mathison CJ. N, Montagnon T. Angew. Chem. Int. Ed. 2003; 42: 4077
  • 25 Blakemore PR, Browder CC, Hong J, Lincoln CM, Nagornyy PA, Robarge LA, Wardrop DJ, White JD. J. Org. Chem. 2005; 70: 5449
  • 26 Hulme AN, Howells GE. Tetrahedron Lett. 1997; 38: 8245
  • 27 Schöning K.-U, Hayashi RK, Powell DR, Kirschning A. Tetrahedron: Asymmetry 1999; 10: 817
    • 28a Kartika R, Gruffi TR, Taylor RE. Org. Lett. 2008; 10: 5047
    • 28b Kim H, Park Y, Hong J. Angew. Chem. Int. Ed. 2009; 48: 7577
    • 28c Custar DW, Zabawa TP, Hines J, Crews CM, Scheidt KA. J. Am. Chem. Soc. 2009; 131: 12406
  • 29 Jiang Y, Hong J, Burke SD. Org. Lett. 2004; 6: 1445

    • The photoinduced reduction of organic compounds mediated by SmI2 is an area of research that has undergone considerable investigation:
    • 30a Skene WG, Scaiano JC, Cozens FL. J. Org. Chem. 1996; 61: 7918
    • 30b Ogawa A, Sumino Y, Nanke T, Ohya S, Sonoda N, Hirao T. J. Am. Chem. Soc. 1997; 119: 2745
    • 30c Ogawa A, Ohya S, Hirao T. Chem. Lett. 1997; 275
    • 30d Ogawa A, Ohya S, Doi M, Sumino Y, Sonoda N, Hirao T. Tetrahedron Lett. 1998; 39: 6341
    • 30e Molander GA, Wolfe CN. J. Org. Chem. 1998; 63: 9031
    • 30f Sumino Y, Harato N, Tomisaka Y, Ogawa A. Tetrahedron 2003; 59: 10499
    • 30g Concellón JM, Rodríguez-Solla H, Simal C, Huerta M. Org. Lett. 2005; 7: 5833

      See, for example:
    • 31a Kende AS, Mendoza JS. Tetrahedron Lett. 1991; 32: 1699
    • 31b Banik BK, Mukhopadhyay C, Venkatraman MS, Becker FF. Tetrahedron Lett. 1998; 39: 7243
    • 31c Chen XY, Zhong WH, Zhang YM. Chin. Chem. Lett. 2000; 11: 387
    • 31d Zhong W, Zhang Y, Chen X. J. Chem. Res., Synop. 2000; 532
    • 31e Brady ED, Clark DL, Keogh DW, Scott BL, Watkin JG. J. Am. Chem. Soc. 2002; 124: 7007
    • 31f Jia Y, Li Q, Wang X, Wang H, Liu X. J. Shanghai Univ. (Engl. Ed.) 2006; 10: 277
  • 32 Arefolov A, Panek JS. J. Am. Chem. Soc. 2005; 127: 5596

    • The following papers examine protecting group strategies, and highlight some of their associated problems:
    • 33a Schelhaas M, Waldmann H. Angew. Chem., Int. Ed. Engl. 1996; 35: 2056
    • 33b Baran PS, Maimone TJ, Richter JM. Nature (London) 2007; 446: 404
    • 33c Young IS, Baran PS. Nat. Chem. 2009; 1: 193
  • 34 Paterson I, Paquet T, Dalby SM. Org. Lett. 2011; 13: 4398
    • 35a Paterson I, Coster MJ. Tetrahedron Lett. 2002; 43: 3285
    • 35b Paterson I, Coster MJ, Chen DY.-K, Gibson KR, Wallace DJ. Org. Biomol. Chem. 2005; 3: 2410

      Routes to the AB and EF subunits and their linkage to complete the natural product have also since been published. AB subunit:
    • 36a Paterson I, Coster MJ, Chen DY.-K, Oballa RM, Wallace DJ, Norcross RD. Org. Biomol. Chem. 2005; 3: 2399

    • EF subunit:
    • 36b Paterson I, Coster MJ, Chen DY.-K, Aceña JL, Bach J, Keown LE, Trieselmann T. Org. Biomol. Chem. 2005; 3: 2420
    • 36c Paterson I, Chen DY.-K, Coster MJ, Aceña JL, Bach J, Wallace DJ. Org. Biomol. Chem. 2005; 3: 2431
    • 37a Smith AB, Adams CM, Lodise Barbosa SA, Degnan AP. J. Am. Chem. Soc. 2003; 125: 350
    • 37b Smith AB, Adams CM, Lodise Barbosa SA, Degnan AP. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 12042
  • 38 Paterson I, Chen DY.-K, Aceña JL, Franklin AS. Org. Lett. 2000; 2: 1513

    • For reviews of the Mitsunobu reaction, see:
    • 39a Simon C, Hosztafi S, Makleit S. J. Heterocycl. Chem. 1997; 34: 349
    • 39b But TY. S, Toy PH. Chem.–Asian J. 2007; 2: 1340
  • 40 Cohen F, Overman LE. J. Am. Chem. Soc. 2006; 128: 2604
  • 41 Romo D, Meyer SD, Johnson DD, Schreiber SL. J. Am. Chem. Soc. 1993; 115: 7906

    • The following reviews discuss medium- and large-ring construction in natural product synthesis, including macrolactonisation and other ring-closing methods:
    • 42a Nicolaou KC. Tetrahedron 1977; 33: 683
    • 42b Laduwahetty T. Contemp. Org. Synth. 1995; 2: 133
    • 42c Parenty A, Moreau X, Campagne J. Chem. Rev. 2006; 106: 911
    • 42d Shiina I. Chem. Rev. 2007; 107: 239
    • 42e Ferraz HM. C, Bombonato FI, Sano MK, Longo LS. Jr. Quim. Nova 2008; 31: 885
  • 43 Aird JI, Hulme AN, White JW. Org. Lett. 2007; 9: 631
  • 44 Fürstner A, Langemann K. J. Am. Chem. Soc. 1997; 119: 9130
  • 45 Paterson I, Luckhurst CA. Tetrahedron Lett. 2003; 44: 3749

    • The total synthesis of phorboxazole A has otherwise been completed by a number of research groups, for example:
    • 46a Forsyth CJ, Ahmed F, Cink RD, Lee CS. J. Am. Chem. Soc. 1998; 120: 5597
    • 46b Smith AB, Minbiole KP, Verhoest PR, Schelhaas M. J. Am. Chem. Soc. 2001; 123: 10942
    • 46c Williams DR, Kiryanov AA, Emde U, Clark MP, Berliner MA, Reeves JT. Angew. Chem. Int. Ed. 2003; 42: 1258
    • 47a Bodnar PM, Shaw JT, Woerpel KA. J. Org. Chem. 1997; 62: 5674
    • 47b Ichibakase T, Nakajima M. Org. Lett. 2011; 13: 1579
    • 48a Horiuchi Y, Gnanadesikan V, Oshima T, Masu H, Katagiri K, Sei Y, Yamaguchi K, Shibasaki M. Chem.–Eur. J. 2005; 11: 5195
    • 49a Mahrwald R, Costisella B. Synthesis 1996; 1087
    • 49b Rohr K, Herre R, Mahrwald R. Org. Lett. 2005; 7: 4499
  • 50 Mlynarski J, Rakiel B, Stodulski M, Suszczyńska A, Frelek J. Chem.–Eur. J. 2006; 12: 8158
  • 51 Dzik WI, Gooßen LJ. Angew. Chem. Int. Ed. 2011; 50: 11047

    • For example, see:
    • 52a Aristoff PA, Harrison AW, Huber AM. Tetrahedron Lett. 1984; 25: 3955
    • 52b Ahn C, DeShong P. J. Org. Chem. 2002; 67: 1754
    • 52c Hodgetts KJ. Tetrahedron 2005; 61: 6860
    • 52d Mishra JK, Panda G. J. Comb. Chem. 2007; 9: 321
  • 53 Kochi T, Tang TP, Ellman JA. J. Am. Chem. Soc. 2003; 125: 11276