Synthesis 2012; 44(14): 2195-2199
DOI: 10.1055/s-0031-1291127
special topic
© Georg Thieme Verlag Stuttgart · New York

Bidentate Lewis Acid Catalyzed Inverse-Electron-Demand Diels–Alder Reaction for the Selective Functionalization of Aldehydes

Luca Schweighauser
Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland, Fax: +41(61)2670976   Email: hermann.wegner@unibas.ch
,
Ina Bodoky
Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland, Fax: +41(61)2670976   Email: hermann.wegner@unibas.ch
,
Simon N. Kessler
Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland, Fax: +41(61)2670976   Email: hermann.wegner@unibas.ch
,
Daniel Häussinger
Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland, Fax: +41(61)2670976   Email: hermann.wegner@unibas.ch
,
Hermann A. Wegner*
Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland, Fax: +41(61)2670976   Email: hermann.wegner@unibas.ch
› Author Affiliations
Further Information

Publication History

Received: 03 April 2012

Accepted: 10 April 2012

Publication Date:
25 May 2012 (online)

Abstract

The inverse-electron-demand Diels–Alder (IEDDA) reaction catalyzed by a bidentate Lewis acid was applied to enamines generated in situ from aldehydes. In general, a high functional group tolerance has been observed. Side reactions during the enamine forming step can limit the yield of the desired naphthalene. For citronellal as substrate, the initial intermediate after the catalyzed IEDDA reaction was trapped by an intramolecular Diels–­Alder reaction to furnish a tricyclic compound. This scaffold represents the framework of natural products such as valerianoids A–C or the patchouli alcohol.

Supporting Information

 
  • References

    • 1a Dobson CM. Nature 2004; 432: 824
    • 1b Lipinski C, Hopkins A. Nature 2004; 432: 855
    • 1c Reymond J.-L, Van Deursen R, Blum LC, Ruddigkeit L. Med. Chem. Commun. 2010; 1: 30
    • 2a Newman DJ, Cragg GM. J. Nat. Prod. 2007; 70: 461
    • 2b Cordier C, Morton D, Murrison S, Nelson A, O’leary-Steele C. Nat. Prod. Rep. 2008; 25: 719
    • 2c Grabowski K, Baringhaus K.-H, Schneider G. Nat. Prod. Rep. 2008; 25: 892
    • 3a Nicolaou KC, Vourloumis D, Winssinger N, Baran PS. Angew. Chem. Int. Ed. 2000; 39: 44
    • 3b Wilson RM, Danishefsky SJ. Angew. Chem. Int. Ed. 2010; 49: 6032
    • 4a Wilson RM, Danishefsky SJ. J. Org. Chem. 2006; 71: 8329
    • 4b Kumar K, Waldmann H. Angew. Chem. Int. Ed. 2009; 48: 3224
    • 4c Wetzel S, Bon RS, Kumar K, Waldmann H. Angew. Chem. Int. Ed. 2011; 50: 10800
    • 5a Hoffmann R. Synthesis 2006; 3531
    • 5b Young IS, Baran PS. Nat. Chem. 2009; 1: 193
    • 5c Shenvi RA, O’Malley DP, Baran PS. Acc. Chem. Res. 2009; 42: 530
    • 6a Nicolaou KC, Snyder SA, Montagnon T, Vassilikogiannakis G. Angew. Chem. Int. Ed. 2002; 41: 1668
    • 6b Kobayashi S, Jørgensen KA. Cycloaddition Reactions in Organic Synthesis. Wiley-VCH; Weinheim: 2002
    • 6c Takao K, Munakata R, Tadano K. Chem. Rev. 2005; 105: 4779
    • 6d Juhl M, Tanner D. Chem. Soc. Rev. 2009; 38: 2983

      For selected examples, see:
    • 7a Boger DL, Coleman RS. J. Am. Chem. Soc. 1987; 109: 2717
    • 7b Boger DL, Zhang M. J. Am. Chem. Soc. 1991; 113: 4230
    • 7c Bodwell GJ, Li J. Angew. Chem. Int. Ed. 2002; 41: 3261
    • 8a Gruseck U, Heuschmann M. Tetrahedron Lett. 1987; 28: 6027
    • 8b For intramolecular examples, see: Boger DL, Coleman RS. J. Org. Chem. 1984; 49: 2240
    • 8c See also: Boger DL, Sakya SM. J. Org. Chem. 1988; 53: 1415
    • 8d For examples with phthalazines, see: Oishi E, Taido N, Iwamoto K, Miyashita A, Higashino T. Chem. Pharm. Bull. 1990; 38: 3268
    • 9a Kessler SN, Wegner HA. Org. Lett. 2010; 12: 4062
    • 9b Kessler SN, Neuburger M, Wegner HA. Eur. J. Org. Chem. 2011; 3238
    • 9c Wegner HA, Kessler SN. Synlett 2012; 699
  • 10 Fernández Sainz Y, Raw SA, Taylor RJ. K. J. Org. Chem. 2005; 70: 10086
    • 11a Chavan SP, Dhondge VD, Patil SS, Rao YT. S, Govande CA. Tetrahedron: Asymmetry 1997; 8: 2517
    • 11b Schmalz HG, de Koning CB, Bernicke D, Siegel S, Pfletschinger A. Angew. Chem. Int. Ed. 1999; 38: 1620
    • 11c Hagiwara H, Okabe T, Ono H, Kamat VP, Hoshi T, Suzuki T, Ando M. J. Chem. Soc., Perkin Trans. 1 2002; 895
    • 11d Mori K. Tetrahedron: Asymmetry 2005; 16: 685
    • 11e Kraus GA, Jeon I. Org. Lett. 2006; 8: 5315
  • 12 For a detailed assignment of the structure, see Supporting Information
    • 13a Srikrishna A, Satyanarayana G. Org. Lett. 2004; 6: 2337
    • 13b Fukushima M, Morii A, Hoshi T, Suzuki T, Hagiwara H. Tetrahedron 2007; 63: 7154
    • 14a Näf F, Ohloff G. Helv. Chim. Acta 1974; 57: 1868
    • 14b Yamada K, Kyotani Y, Manabe S, Suzuki M. Tetrahedron 1979; 35: 293
    • 14c Magee TV, Stork G, Fludzinski P. Tetrahedron Lett. 1995; 36: 7607
    • 14d Srikrishna A, Satyanarayana G. Tetrahedron: Asymmetry 2005; 16: 3992
  • 15 Jagdale AR, Park JH, Youn SW. J. Org. Chem. 2011; 76: 7204
  • 16 Guan B.-T, Xiang S.-K, Wang B.-Q, Sun Z.-P, Wang Y, Zhao K.-Q, Shi Z.-J. J. Am. Chem. Soc. 2008; 130: 3268
  • 17 Baroudi A, Mauldin J, Alabugin IV. J. Am. Chem. Soc. 2010; 132: 967
  • 18 Cho C.-H, Sun M, Seo Y.-S, Kim C.-B, Park K. J. Org. Chem. 2005; 70: 1482
  • 19 Guam B.-T, Xiang S.-K, Wang B.-Q, Sum Z.-P, Wang Y, Zhao K.-Q, Shi Z.-J. J. Am. Chem. Soc. 2008; 130: 3268