Dtsch Med Wochenschr 2011; 136(11): 541-545
DOI: 10.1055/s-0031-1274539
Übersicht | Review article
Endokrinologie
© Georg Thieme Verlag KG Stuttgart · New York

Die Rolle des Gehirns in der Regulation des Stoffwechsels

Central nervous system control of energy homeostasisF. Machleidt1 , H. Lehnert1
  • 1Medizinische Klinik 1, Universitätsklinikum Schleswig-Holstein, Campus Lübeck
Further Information

Publication History

eingereicht: 16.11.2010

akzeptiert: 27.1.2011

Publication Date:
08 March 2011 (online)

Preview

Zusammenfassung

Das Gehirn wird fortlaufend mit Informationen über die Verteilung und Menge der Energiereserven aus der Körperperipherie versorgt. Endokrine, autonome und kognitiv-hedonische Signale werden zentral integriert und rufen über anabole und katabole Signalwege Effekte auf den Gesamtorganismus hervor. Die Hormone Insulin und Leptin sind bedeutende Adipositassignale, d. h. ihre Konzentrationen im Blut spiegeln die Menge an Körperfett wieder und bilden einen negativen Feedbackmechanismus zwischen Körperperipherie und dem zentralen Nervensystem. Der hypothalamische Nucleus arcuatus ist die wichtigste zentralnervöse Struktur, die diese Informationen verarbeitet. Weiterhin ist das ZNS in der Lage, direkt die Konzentrationsänderungen bestimmter Nährstoffe zu messen und auf diese zu reagieren. Für die Entwicklung effektiver Therapien von Störungen der Energiebalance ist die weitere Aufklärung dieser neurobiologischen Vorgänge von entscheidender Bedeutung. Diese Arbeit gibt einen Überblick über die zentralnervöse Stoffwechselregulation und die ihr zugrunde liegenden molekularen Mechanismen.

Abstract

The brain is continuously supplied with information about the distribution and amount of energy stores from the body periphery. Endocrine, autonomic and cognitive-hedonic signals are centrally integrated and exert effects on the whole organism via anabolic and catabolic pathways. The adiposity signals insulin and leptin reflect the amount of body fat and are part of a negative feedback mechanism between the periphery and the central nervous system. The hypothalamic arcuate nucleus is the most important central nervous structure, which integrates this information. Furthermore, the CNS is able to directly measure and to respond to changes in the concentration of certain nutrients. In order to develop effective therapies for the treatment of disorders of energy balance the further elucidation of these neuro-biological processes is of crucial importance. This article provides an overview of the CNS regulation of metabolism and its underlying molecular mechanisms.

Literatur

  • 1 Anand B K, Brobeck J R. Hypothalamic control of food intake in rats and cats.  Yale J Biol Med. 1951;  24 123-140
  • 2 Banks W A. Blood-brain barrier and energy balance.  Obesity (Silver Spring). 2006;  14 Suppl 5 234S-237S
  • 3 Benoit S C, Air E L, Coolen L M. et al . The catabolic action of insulin in the brain is mediated by melanocortins.  J Neurosci. 2002;  22 9048-9052
  • 4 Bernard C. Leçons de physiologie experimentale appliqués á là medecine. Paris: Baillère et Fils; 1854
  • 5 Bruning J C, Gautam D, Burks D J. et al . Role of brain insulin receptor in control of body weight and reproduction.  Science. 2000;  289 2122-2125
  • 6 Clark J T, Kalra P S, Crowley W R, Kalra S P. Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats.  Endocrinology. 1984;  115 427-429
  • 7 Cone R D. Anatomy and regulation of the central melanocortin system.  Nat Neurosci. 2005;  8 571-578
  • 8 Cone R D. The central melanocortin system and energy homeostasis.  Trends Endocrinol Metab. 1999;  10 211-216
  • 9 Farooqi I S, Jebb S A, Langmack G. et al . Effects of recombinant leptin therapy in a child with congenital leptin deficiency.  N Engl J Med. 1999;  341 879-884
  • 10 Frederich R C, Hamann A, Anderson S, Lollmann B, Lowell B B, Flier J S. Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action.  Nat Med. 1995;  1 1311-1314
  • 11 Halaas J L, Gajiwala K S, Maffei M. et al . Weight-reducing effects of the plasma protein encoded by the obese gene.  Science. 1995;  269 543-546
  • 12 Hallschmid M, Benedict C, Schultes B, Fehm H L, Born J, Kern W. Intranasal insulin reduces body fat in men but not in women.  Diabetes. 2004;  53 3024-3029
  • 13 Hardie D G. Minireview: the AMP-activated protein kinase cascade: the key sensor of cellular energy status.  Endocrinology. 2003;  144 5179-5183
  • 14 Haslam D W, James W P. Obesity.  Lancet. 2005;  366 1197-1209
  • 15 Havrankova J, Roth J, Brownstein M. Insulin receptors are widely distributed in the central nervous system of the rat.  Nature. 1978;  272 827-829
  • 16 Haynes W G, Morgan D A, Walsh S A, Mark A L, Sivitz W I. Receptor-mediated regional sympathetic nerve activation by leptin.  J Clin Invest. 1997;  100 270-278
  • 17 Heymsfield S B, Greenberg A S, Fujioka K. et al . Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial.  JAMA. 1999;  282 1568-1575
  • 18 Huszar D, Lynch C A, Fairchild-Huntress V. et al . Targeted disruption of the melanocortin-4 receptor results in obesity in mice.  Cell. 1997;  88 131-141
  • 19 Kennedy G C. The role of depot fat in the hypothalamic control of food intake in the rat.  Proc R Soc Lond B Biol Sci. 1953;  140 578-596
  • 20 Loftus T M, Jaworsky D E, Frehywot G L. et al . Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors.  Science. 2000;  288 2379-2381
  • 21 Maffei M, Halaas J, Ravussin E. et al . Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects.  Nat Med. 1995;  1 1155-1161
  • 22 Mayer J. Regulation of energy intake and the body weight: the glucostatic theory and the lipostatic hypothesis.  Ann N Y Acad Sci. 1955;  63 15-43
  • 23 Minokoshi Y, Alquier T, Furukawa N. et al . AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus.  Nature. 2004;  428 569-574
  • 24 Montague C T, Farooqi I S, Whitehead J P. et al . Congenital leptin deficiency is associated with severe early-onset obesity in humans.  Nature. 1997;  387 903-908
  • 25 Moran T H, Kinzig K P. Gastrointestinal satiety signals II. Cholecystokinin.  Am J Physiol Gastrointest Liver Physiol. 2004;  286 G183-G188
  • 26 Obici S, Feng Z, Arduini A, Conti R, Rossetti L. Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production.  Nat Med. 2003;  9 756-761
  • 27 Obici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L. Central administration of oleic acid inhibits glucose production and food intake.  Diabetes. 2002;  51 271-275
  • 28 Obici S, Zhang B B, Karkanias G, Rossetti L. Hypothalamic insulin signaling is required for inhibition of glucose production.  Nat Med. 2002;  8 1376-1382
  • 29 Oomura Y, Ono T, OOYAMA H, Wayner M J. Glucose and osmosensitive neurones of the rat hypothalamus.  Nature. 1969;  222 282-284
  • 30 Polonsky K S, Given B D, CE. Twenty-four-hour profiles and pulsatile patterns of insulin secretion in normal and obese subjects.  J Clin Invest. 1988;  81 442-448
  • 31 Rahmouni K, Haynes W G, Morgan D A, Mark A L. Role of melanocortin-4 receptors in mediating renal sympathoactivation to leptin and insulin.  J Neurosci. 2003;  23 5998-6004
  • 32 Sayk F, Heutling D, Dodt C. et al . Sympathetic function in human carriers of melanocortin-4 receptor gene mutations.  J Clin Endocrinol Metab. 2010;  95 1998-2002
  • 33 Schwartz M W, Porte Jr D. Diabetes, obesity, and the brain.  Science. 2005;  307 375-379
  • 34 Schwartz M W, Woods S C, Porte Jr D, Seeley R J, Baskin D G. Central nervous system control of food intake.  Nature. 2000;  404 661-671
  • 35 Seeley R J, DG, Campfield L A. et al . Intraventricular leptin reduces food intake and body weight of lean rats but not obese Zucker rats.  Horm Metab Res. 1996;  28 664-668
  • 36 Woods S C, D’Alessio D A. Central control of body weight and appetite.  J Clin Endocrinol Metab. 2008;  93 S37-S50
  • 37 Woods S C, Lotter E C, McKay L D, Porte Jr D. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons.  Nature. 1979;  282 503-505
  • 38 Zarjevski N, Cusin I, Vettor R, Rohner-Jeanrenaud F, Jeanrenaud B. Chronic intracerebroventricular neuropeptide-Y administration to normal rats mimics hormonal and metabolic changes of obesity.  Endocrinology. 1993;  133 1753-1758
  • 39 Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman J M. Positional cloning of the mouse obese gene and its human homologue.  Nature. 1994;  372 425-432

Felix Machleidt

Medizinische Klinik 1
Universitätsklinikum Schleswig-Holstein, Campus Lübeck

Ratzeburger Allee 160

23538 Lübeck

Phone: 0451/500-5786

Fax: 0451/500-3640

Email: felix.machleidt@uk-sh.de