Abstract
The enantioselective direct cross-aldol addition between enolizable
aldehydes is of great importance because this transformation provides
access to configurationally defined β-hydroxyaldehydes.
These products in turn are valuable building blocks in total syntheses
of natural polyketide structures. This account gives an overview
of advances made in this field of organocatalysis.
1 Introduction
2 Direct Aldol Additions of Enolizable Aldehydes Catalyzed by
Proline, Proline Derivatives, and Imidazolidinone
2.1 Direct Aldol Additions Catalyzed by Proline and Proline Derivatives
2.2 Direct Aldol Additions Catalyzed by Imidazolidinone
3 Direct Aldol Additions of Enolizable Aldehydes Catalyzed by
Histidine
4 Conclusion
Key words
aldol reactions - enolizable aldehydes - asymmetric catalysis - organocatalysis -
stereoselectivity
References
<A NAME="RA59411ST-1">1 </A>
List B.
Lerner RA.
Barbas CF.
J.
Am. Chem. Soc.
2000,
122:
2395
<A NAME="RA59411ST-2A">2a </A>
Li J.
Fu N.
Li X.
Luo S.
Cheng J.-P.
J.
Org. Chem.
2010,
75:
4501
<A NAME="RA59411ST-2B">2b </A>
Hajra S.
Giri AK.
Hazra S.
J.
Org. Chem.
2009,
74:
7978
<A NAME="RA59411ST-2C">2c </A>
Kano T.
Yamaguchi Y.
Maruoka K.
Chem.
Eur. J.
2009,
15:
6678
<A NAME="RA59411ST-2D">2d </A>
Siyutkin DE.
Kucherenko AS.
Zlotin SG.
Tetrahedron
2009,
65:
1366
<A NAME="RA59411ST-2E">2e </A>
Xiong Y.
Wang F.
Dong S.
Liu X.
Feng X.
Synlett
2008,
73
<A NAME="RA59411ST-2F">2f </A>
Zu L.
Xie H.
Li H.
Wang J.
Wang W.
Org. Lett.
2008,
10:
1211
<A NAME="RA59411ST-2G">2g </A>
Kano T.
Yamaguchi Y.
Tanaka Y.
Maruoka K.
Angew. Chem. Int. Ed.
2007,
46:
1738
<A NAME="RA59411ST-2H">2h </A>
Hayashi Y.
Aratake S.
Itoh T.
Okano T.
Sumiya T.
Shoji M.
Chem.
Commun. (Cambridge)
2007,
957
with the exception of the reaction between dimethoxyacetaldehyde
and hydrocinnamaldehyde
<A NAME="RA59411ST-2I">2i </A>
Luo S.
Li J.
Xu H.
Zhang L.
Cheng J.-P.
Org. Lett.
2007,
9:
3675
<A NAME="RA59411ST-2J">2j </A>
Mase N.
Nakai Y.
Ohara N.
Yoda H.
Takabe K.
Tanaka F.
Barbas CF.
J.
Am. Chem. Soc.
2006,
128:
734
<A NAME="RA59411ST-2K">2k </A>
Zhang F.
Su N.
Gong Y.
Synlett
2006,
1703
<A NAME="RA59411ST-2L">2l </A>
Zhang S.
Duan W.
Wang W.
Adv.
Synth. Catal.
2006,
348:
1228
<A NAME="RA59411ST-2M">2m </A>
Hayashi Y.
Urushima T.
Shoji M.
Uchimaru T.
Shiina I.
Adv.
Synth. Catal.
2005,
347:
1595
<A NAME="RA59411ST-2N">2n </A>
Wang W.
Li H.
Wang J.
Tetrahedron
Lett.
2005,
46:
5077
<A NAME="RA59411ST-3A">3a </A>
Northrup AB.
MacMillan DWC.
J. Am. Chem. Soc.
2002,
124:
6798
highlighted in
<A NAME="RA59411ST-3B">3b </A>
Cauble DF.
Krische MJ.
Chemtracts
2002,
15:
380
<A NAME="RA59411ST-3C">3c </A>
Alcaide B.
Almendros P.
Angew. Chem. Int. Ed.
2003,
42:
858
<A NAME="RA59411ST-3D">3d </A>
Marigo M.
Melchiorre P.
ChemCatChem
2010,
2:
621
<A NAME="RA59411ST-4A">4a </A>
Northrup AB.
Mangion IK.
Hettche F.
MacMillan DWC.
Angew. Chem. Int. Ed.
2004,
43:
2152
<A NAME="RA59411ST-4B">4b </A>
Northrup AB.
MacMillan DWC.
Science (Washington,
DC, U.S.)
2004,
305:
1752
<A NAME="RA59411ST-5">5 </A>
Mangion IK.
MacMillan DWC.
J. Am.
Chem. Soc.
2005,
127:
3696
<A NAME="RA59411ST-6">6 </A>
Pihko PM.
Erkkilä A.
Tetrahedron Lett.
2003,
44:
7607
<A NAME="RA59411ST-7">7 </A>
Smith AB.
Tomioka T.
Risatti CA.
Sperry JB.
Sfouggatakis C.
Org. Lett.
2008,
10:
4359
<A NAME="RA59411ST-8">8 </A>
Storer RI.
MacMillan DWC.
Tetrahedron
2004,
60:
7705
<A NAME="RA59411ST-9">9 </A>
Chowdari NS.
Ramachary DB.
Cordova A.
Barbas
CF.
Tetrahedron
Lett.
2002,
43:
9591
<A NAME="RA59411ST-10">10 </A>
Cordova A.
Tetrahedron
Lett.
2004,
45:
3949
<A NAME="RA59411ST-11">11 </A>
Gijsen HJM.
Wong C.-H.
J. Am. Chem.
Soc.
1995,
117:
7585
<A NAME="RA59411ST-12">12 </A>
Casas J.
Engqvist M.
Ibrahem I.
Kaynak B.
Cordova A.
Angew.
Chem. Int. Ed.
2005,
44:
1343
<A NAME="RA59411ST-13">13 </A>
Reyes E.
Cordova A.
Tetrahedron Lett.
2005,
46:
6605
<A NAME="RA59411ST-14A">14a </A>
Cordova A.
Engqvist M.
Ibrahem I.
Casas J.
Sunden H.
Chem. Commun. (Cambridge)
2005,
2047
<A NAME="RA59411ST-14B">14b </A>
Cordova A.
Ibrahem I.
Casas J.
Sunden H.
Engqvist M.
Reyes E.
Chem. Eur. J.
2005,
11:
4772
<A NAME="RA59411ST-15">15 </A>
Zhao G.-L.
Liao W.-W.
Cordova A.
Tetrahedron
Lett.
2006,
47:
4929
<A NAME="RA59411ST-16A">16a </A>
Kofoed J.
Reymond J.-L.
Darbre T.
Org. Biomol. Chem.
2005,
3:
1850
<A NAME="RA59411ST-16B">16b </A>
Kofoed J.
Machuqueiro M.
Reymond J.-L.
Darbre T.
Chem. Commun. (Cambridge)
2004,
1540
<A NAME="RA59411ST-17">17 </A>
Thayumanavan R.
Tanaka F.
Barbas CF.
Org. Lett.
2004,
6:
3541
<A NAME="RA59411ST-18">18 </A>
Guillena G.
Najera C.
Ramon DJ.
Tetrahedron: Asymmetry
2007,
18:
2249
<A NAME="RA59411ST-19">19 </A> With the sole exception of cross-aldol
additions involving isobutyraldehyde as the ene component and 4-nitrobenz-aldehyde
as the carbonyl one, see:
Mase N.
Tanaka F.
Barbas CF.
Angew.
Chem. Int. Ed.
2004,
43:
2420
<A NAME="RA59411ST-20">20 </A>
Hayashi Y.
Aratake S.
Okano T.
Takahashi J.
Sumiya T.
Shoji M.
Angew. Chem. Int. Ed.
2006,
45:
5527
<A NAME="RA59411ST-21">21 </A>
Mangion IK.
Northrup AB.
MacMillan DWC.
Angew. Chem. Int. Ed.
2004,
43:
6722
<A NAME="RA59411ST-22">22 </A> For chiral phosphine oxide catalysis,
see:
Kotani S.
Shimoda Y.
Sugiura M.
Nakajima M.
Tetrahedron
Lett.
2009,
50:
4602
<A NAME="RA59411ST-23">23 </A>
For primary amine catalysis, see:
ref. 2a
<A NAME="RA59411ST-24">24 </A>
Markert M.
Mulzer M.
Schetter B.
Mahrwald R.
J. Am. Chem. Soc.
2007,
129:
7258
<A NAME="RA59411ST-25A">25a </A>
Markert M.
Scheffler U.
Mahrwald R.
J. Am. Chem. Soc.
2009,
131:
16642
highlighted in
<A NAME="RA59411ST-25B">25b </A>
Zanda M.
Synform
2010,
A16 ; DOI: 10.1055/s-0030-1259401
<A NAME="RA59411ST-25C">25c </A>
Synfacts
2010,
101
<A NAME="RA59411ST-26">26 </A>
Scheffler, U.; Mahrwald R. in preparation.